

 Faculty of Science & Bio-Engineering Sciences

Department of Computer Science

 Web & Information Systems Engineering Lab (WISE)

 The Feature Assembly Approach for Modelling &

Knowledge Management of Software Variability

Thesis submitted in fulfilment of the requirements for the award of the degree of Doctorate in Science

 Lamia A. M. Abo Zaid

 Academic year: 2012 - 2013

 Promoter: Prof. Dr. Olga De Troyer

© 2013 Lamia A.M. Abo Zaid

All rights reserved. No parts of this dissertation may be reproduced or transmitted in any form,

electronic, mechanical, photocopying, recording, or any other means without written permission from the

author.

Acknowledgements

Acknowledgments

This research would not have been possible without the help of many individuals and

organizations. Therefore, in these lines I would like to thank all the people who in many

different ways have made this work possible and turned it into a wonderful experience.

I would like to express my deep and sincere gratitude to my promoter, Prof. Dr. Olga De

Troyer, head of the Web & Information Systems Engineering (WISE) Laboratory of the Vrije

Universiteit Brussel. Olga was always available for advise, guidance, encouragement, and

fruitful stimulating discussions. I believe that our discussions have largely enhanced my

scientific experience and allowed introducing a new feature modelling language and modelling

technique presented in this thesis. I would also like to sincerely thank her for her thorough and

careful review of this thesis. I would like to thank her for supporting, and encouraging me to

participate in several conferences worldwide. I learned a lot from her about life, research, how

to tackle new problems and how to develop techniques to solve them. Many thanks Olga.

Next, I would like to thank the members of my jury: Prof. Dr. Ir. Geert-Jan Houben,

Prof. Dr. Frederik Gailly, Prof. Dr. Inge van de Weerd, Prof. Dr. Eddy Van Dijck, Prof. Dr.

Beat Signer, and Prof. Dr. Viviane Jonckers, for being members of the jury evaluating this

dissertation. Their comments have improved the text and are greatly acknowledged.

In addition, I have been very privileged to get to know and to collaborate with many

other great people. Thanks go to my ex-colleague at WISE, Dr. Frederic Kleinermann. The

many conversations I had with him on various topics gave me valuable insights and triggered

new ideas. Thanks also go to all my colleagues and ex-colleagues at the WISE, namely

Mohammed El Dammagh, William Van Woensel, and Sven Casteleyn for our interesting

discussions about many different things.

I would also like to thank my master thesis student Tom Puttemans and my bachelor

student Jasper Tack for their implementations which were a great help for validating my work.

Thank you Tom and Jasper.

A special thanks goes to my master thesis promoter Prof. Geert-Jan Houben who gave

me the opportunity to work in the VariBru research project while he was at the Vrije

Universiteit Brussel before heading off to TU Delft, many thanks Geert-Jan.

I would like to thank Innoviris, the Brussels institute for research and innovation

(www.innoviris.be) for funding the VariBru project (www.varibru.be) that provided the context

for this PhD work.

Acknowledgements

I would also like to thank Sebastien Le Grand and Frederic Arijs from Antidot for their

valuable comments on the Feature Assembly approach being a pilot user for the approach.

I would like to thank the VariBru team members for providing a nice and friendly

atmosphere in which ideas were discussed. Particularly, I would like to thank Wim Codenie,

Tom Tourwé, and Nicolás González-Deleito from Sirris for our discussions about variability

problems.

My deep gratitude and sincere thanks goes to my father for his motivation and support

throughout my studies, from kindergarten to university. Without his fine education and thorough

support, I would probably not have taken up the eagerness or motivation to do this PhD. I would

like to sincerely thank my mother for her support, encouragement and love, which gave me so

much joy. I would also like to thank my sisters for their support and encouragement.

I would like to sincerely thank my husband for his love, support, encouragement, and

patience during the PhD period. I thank him for being there for me in times when I needed him

most which gave me the power to perform this research. I also would like to thank my two

lovely daughters Rasha and Rawan; with their lovely smiles they do miracles.

Finally, I would like to thank all the people I forgot to mention here. Many people

contributed in some way to this PhD and I thank all of them.

Abstract

I

Abstract

Over the last decades software development has evolved into a complex task due to the

large number of features available in software, the many feature interactions, the distributed

nature of software, and the many stakeholders involved. At the same time, there is more

demand to deliver software rapidly while maintaining customer intimacy. This situation has led

to the emergence of so-called Software Product Lines (SPL) or more generally variable

software. SPLs tend to manufacture the software development process. Instead of developing a

single product, the fundamental base is to develop multiple closely related but different

products. These different products share some common features but each individual product has

a distinguishable set of features that gives each product a unique flavour. Unfortunately,

variability comes at the price of increasing complexity. The key issue for success is to have a

balance between the added flexibility the variability offers and the complexity the variability

brings to the development cycle. Therefore, there is a need for efficiently modelling and

managing the knowledge around software variability as early as domain analysis during the

domain engineering of the software product line. During domain analysis, variability modelling

techniques allow to explicitly represent the variability and commonality of features while

clearly indicating their influence on the complexity. Feature-oriented modelling techniques

have been commonly used to model the variability and commonality in software product lines.

Variability information management refers to the continuous management of the knowledge

represented by the variability models (often involving many stakeholders) making this

knowledge explicit and readily available.

In this thesis, we propose the Feature Assembly approach, a novel approach for

modelling and managing knowledge about software variability. Feature Assembly also

introduces the principle of combining reuse and variability. First of all, the Feature Assembly

approach could help companies better define their products by thinking in terms of “features”.

Furthermore, it allows companies to gradually introduce variability in their products and make

use of previous modelled features. The Feature Assembly approach is a combination of the

Feature Assembly Modelling technique, the Feature Assembly Reuse Framework, and the

Feature Assembly Knowledge Representation Framework.

The backbone of the Feature Assembly approach is the Feature Assembly Modelling

technique, which allows defining modular “parts” (i.e. features) via separating concerns and

clearly distinguishing features that represent variability (i.e. variation points) from those which

don’t. The modelling technique aims for keeping the created models simple and understandable

Abstract

II

and for improving the extensibility of the features and feature models. The Feature Assembly

Modelling technique is based on providing a set of easy to use, and unambiguously defined

modelling concepts. Furthermore, it aims at scaling down complexity by promoting modelling

with separation of concerns, because trying to deal with all possible viewpoints at the same

time is very difficult and will usually result in badly structured models. A more scalable

approach is to model the required capabilities of the software with respect to one viewpoint at

the time. Therefore, in the Feature Assembly Modelling technique we model software from

different viewpoints, called perspectives. Perspectives provide an abstraction mechanism which

allows focusing on features that are related to a certain viewpoint.

Additionally, the Feature Assembly Reuse Framework introduces the idea of

composing software by assembling features. Furthermore, it promotes feature reusability by

storing features in a so-called Feature Pool, which acts as a feature repository for a company.

The main idea is that new feature models can be made by combining existing features (stored in

the feature pool) with new features. Newly defined features are then added to the Feature Pool,

leading it to continuously grow. Such an approach allows companies to consider reuse as early

as the design phase, therefore efficiently making use of previous experiences. In addition, reuse

at the domain analysis level could encourage reuse at the architecture design and development

levels, increasing the overall productivity and reducing development cost.

The Feature Assembly Knowledge Representation Framework offers management of

the information contained in the defined Feature Assembly models. Explicitly representing and

storing this information unlocks knowledge that would otherwise be stored in documentation

and in people’s minds. For this purpose, the Feature Assembly Ontology is defined. It acts as a

formal documentation repository in which the information is stored. Users can readily retrieve

this information at any point in time. Furthermore, the framework provides detection for

modelling errors and conflicts by providing a validation of the correctness of the models.

III

Declaration

Parts of this thesis have been published:

Chapter 6:

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2010). Feature Assembly Modelling: A

New Technique for Modelling Variable Software, 5th International Conference on

Software and Data Technologies, Proceedings Vol: 1, pp: 29 - 35, Eds. José Cordeiro

Maria Virvou Boris Shishkov, Publ. SciTePress, ISBN 978-989-8425-22-5, Athens,

Greece

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2010). Feature Assembly: A New

Feature Modeling Technique. In : 29th International Conference on Conceptual

Modeling, Lecture Notes in Computer Science, Vol. 6412/2010, pp. 233-246,

Springer. DOI:10.1007/978-3-642-16373-9_17

Chapter 7:

Abo Zaid, L., and De Troyer, O. (2011). Towards Modeling Data Variability in

Software Product Lines, T. Halpin et al. (Eds.): BPMDS 2011 and EMMSAD 2011,

LNBIP Vol 81, pp. 453-467. Springer, Heidelberg (2011). DOI:10.1007/978-3-642-

21759-3_33

Chapter 9:

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2011). Feature Assembly Framework:

towards scalable and reusable feature models. In Proceedings of the 5th Workshop on

Variability Modeling of Software-Intensive Systems (VaMoS '11). pp.1-9. ACM, New

York, NY, USA. DOI:10.1145/1944892.1944893

Chapter 11:

Abo Zaid, L., and De Troyer, O. (2012). Modelling and Managing Variability with

Feature Assembly – An Experience Report, Chaudron et al. (Eds.): EESSMod 2012

EESSMOD'12, ACM, October, Innsbruck, Austria. DOI:10.1145/2424563.2424575

Table of Contents

IV

Table of Contents

Acknowledgments .. I

Abstract ... I

Table of Contents .. IV

List of Figures .. XI

List of Tables ... XV

List of Listings .. XVII

List of Abbreviations .. XIX

Chapter 1: Introduction ... 1

1.1 Research Context ... 2

1.2 Research Scope .. 4

1.3 Problem Statement ... 5

1.4 Research Questions .. 7

1.5 Positioning of the Research .. 8

1.5.1 Feature Modelling Methods ... 8

1.5.2 Feature Modelling for Large and Complex Systems ... 8

1.5.3 Reuse and Feature Modelling... 9

1.5.4 Knowledge Management and Software Models .. 9

1.6 Research Approach and Methodology ... 10

1.7 Research Contributions .. 13

1.8 Thesis Outline .. 14

Chapter 2: Variability Modelling Using Feature Models 17

2.1 Software Variability ... 17

2.2 Software Variability Modelling ... 20

2.3 Feature Models .. 21

Table of Contents

V

2.3.1 Normalizing Feature Models.. 26

2.4 Mainstream Feature Modelling Techniques ... 27

2.4.1 Feature-Oriented Reuse Method (FORM) ... 27

2.4.2 FeatureRSEB .. 28

2.4.3 van Gurp et al. Feature Graph .. 29

2.4.4 Riebisch et al. Feature Models ... 30

2.4.5 PLUSS .. 31

2.4.6 Cardinality Based Feature Models ... 31

2.5 Feature Modelling Methods based on UML ... 32

2.5.1 Clauss UML Variability Stereotypes ... 32

2.5.2 Ziadi et al. UML Variability Profile .. 33

2.5.3 Gomaa Variability Metaclasses .. 33

2.5.4 Korherr and List UML Variability Profiles ... 34

2.6 Summary ... 34

Chapter 3: Related Work ... 35

3.1 Representing and Analysing Feature Models ... 35

3.2 Feature Models for Configuration ... 37

3.3 Modelling with Separation of Concerns ... 38

3.4 Model Integration and Consistency Checking .. 40

3.5 Multiple Product Lines ... 41

3.6 Variability Modelling and Databases ... 43

3.7 Feature Model Visualization ... 44

3.8 Summary ... 44

Chapter 4: Background .. 47

4.1 Conceptual Modelling .. 48

4.2 Knowledge Representation Techniques ... 50

4.2.1 Logic Based Knowledge Representation ... 51

4.2.2 Semantic Networks .. 52

4.2.3 Ontologies .. 53

4.2.4 Rule-Based Knowledge Representation ... 55

4.3 Semantic Web Knowledge Management Techniques 55

Table of Contents

VI

4.3.1 OWL .. 56

4.3.2 Querying RDFs/OWL Ontologies.. 57

4.3.3 Reasoning on RDFs/OWL Ontologies ... 58

4.4 Knowledge Management Applied to Software Variability 59

4.5 Summary ... 60

Chapter 5: Challenges for Software Variability Modelling 61

5.1 Limitations of Mainstream Feature Modelling Techniques 62

5.1.1 Difficulties in Using the Feature Modelling Technique in Practice 63

5.1.2 Ambiguity in Modelling Concepts ... 65

5.1.3 Limited Reuse Opportunities ... 66

5.1.4 Lack of Abstraction Mechanisms ... 67

5.2 Challenges in Managing the Information in Feature Models 67

5.2.1 Information Management to Support Feature Modelling .. 68

5.2.2 Information Management of Feature Models .. 69

5.3 Recommendations for Feature Assembly ... 70

5.4 Summary ... 71

Chapter 6: The Feature Assembly Modelling Technique 73

6.1 Feature Assembly Overview ... 73

6.2 Running Example – E-Shop Product Line ... 74

6.3 Variability Analysis ... 75

6.4 Multi-Perspective Approach ... 77

6.4.1 System Perspective .. 79

6.4.2 User Perspective ... 81

6.4.3 Functional Perspective ... 82

6.4.4 Graphical User Interface Perspective ... 84

6.4.5 Goal Perspective .. 86

6.4.6 Non-Functional Perspective ... 87

6.4.7 Discussion .. 88

6.5 Feature Assembly Modelling (FAM) Language 91

6.5.1 Features .. 92

6.5.2 Feature Relations .. 93

Table of Contents

VII

6.5.3 Feature Dependencies .. 95

6.5.3.1 Feature dependencies within the same perspective .. 95

6.5.3.2 Feature dependencies between different perspectives .. 96

6.5.4 FAM Formal Specification ... 97

6.5.4.1 FAM Syntax.. 97

6.5.4.2 FAM Formal Semantics .. 101

6.6 Discussion ... 103

6.7 Summary ... 107

Chapter 7: Feature Assembly Modelling For Data Intensive

Applications .. 109

7.1 The Persistent Perspective .. 110

7.1.1 Defining the Persistent Perspective .. 111

7.1.2 Refine the Persistent Perspective ... 112

7.2 Linking Feature Assembly Models and Data Models 113

7.2.1 The Centralized Data Model Approach ... 114

7.2.2 The Decentralized Data Model Approach .. 116

7.3 Summary ... 117

Chapter 8: The Quiz Product Line Case ... 119

8.1 Problem Statement ... 119

8.2 Feature Assembly Models for the QPL .. 121

8.2.1 QPL System Perspective .. 122

8.2.2 QPL Users Perspective ... 124

8.2.3 QPL Functional Perspective ... 125

8.2.4 QPL Graphical User Interface Perspective .. 131

8.2.5 Completing the Model ... 134

8.2.6 QPL Persistent Perspective .. 136

8.3 QPL Variable Data Model .. 139

8.4 Extensibility of the Feature Assembly Modelling Technique – An

example ... 140

8.5 Lessons Learned .. 142

8.6 Summary ... 143

Table of Contents

VIII

Chapter 9: The Feature Assembly Reuse Framework 145

9.1 Why Feature Assembly? ... 145

9.2 Overview of the Feature Assembly Reuse Framework 148

9.3 The Feature Pool .. 149

9.3.1 Feature Pool Example .. 151

9.4 Assembling Features with Feature Assembly 153

9.4.1 Feature Assembly Example ... 155

9.5 Summary ... 157

Chapter 10: Feature Assembly Knowledge Management Framework159

10.1 Overview ... 160

10.1.1 Why OWL? .. 161

10.2 The FAM Ontology .. 162

10.2.1 The FAM Ontology Vocabulary .. 164

10.2.2 FAM Error Detection via the FAM Ontology .. 170

10.2.2.1 FAM Ontology - Error Capturing Rules .. 172

10.2.2.2 FAM Ontology - Error Debugging ... 173

10.2.3 Populating the FAM Ontology with Individuals .. 176

10.3 FAM Knowledge Manipulation .. 179

10.3.1 FAM Ontology Browsing .. 179

10.3.2 FAM Ontology Querying ... 180

10.3.3 Dedicated Ontology Browsing and Querying .. 182

10.4 The Feature Pool Ontology Representation .. 186

10.5 Summary ... 188

Chapter 11: Feature Assembly in Practice .. 191

11.1 Pilot Survey .. 191

11.2 ANTIDOT Experience Report .. 192

11.2.1 Method Adopted .. 193

11.2.2 Feature Assembly Modelling Technique ... 193

11.2.3 Feature Assembly Knowledge Manipulation ... 197

11.2.4 The Feature Assembly Reuse Framework ... 199

11.2.5 Discussion .. 200

Table of Contents

IX

11.3 Threats to Validity .. 200

11.4 Summary ... 201

Chapter 12: Conclusions and Future Work 203

12.1 Summary ... 203

12.1.1 Steps in the Research and Artefacts developed:... 203

12.2 Contributions and Achievements ... 207

12.3 Limitations ... 208

12.4 Future Work ... 209

List of References .. 213

Appendix A: A Conceptual Model of Feature Mainstream Models 227

Appendix B: FAM Ontology in OWL Functional Syntax 231

Appendix C: OWL DL Description Logic Representation 237

Appendix D: Feature Pool Ontology in OWL Functional Syntax 239

X

List of Figures

XI

List of Figures

Figure 1.1: Domain and Application engineering .. 1

Figure 1.2: Research Areas related to the Feature Assembly Approach 10

Figure 2.1 Sample of Quiz Product Line possible products... 19

Figure 2.2: Feature Model of Car Product Line ... 24

Figure 2.3: Feature Model of Car Product Line ... 25

Figure 2.4 Possible normalization for a)optional b)mandatory alternative features 26

Figure 2.5 Possible normalization for a)optional b)mandatory OR features 26

Figure 2. 6 A feature model in FORM for the Private Branch Exchange (PBX) 28

Figure 2.7 A feature model in FeatureRSEB .. 29

Figure 2.8 van Gurp et al. feature graph for a mail client product line 30

Figure 2.9 Riebisch et al. feature model for a library Product line 30

Figure 2.10 PLUSS feature model for a Motor Engine System 31

Figure 2.11 CBFM feature model for an E shop product line 32

Figure 4.1: Conceptual Modelling Process .. 49

Figure 4.2: Sample Semantic Network ... 53

Figure 5.1 Feature Model of GPL, ambiguity in Graph Type definition 65

Figure 5.2 Example showing ambiguity of feature models .. 66

Figure 5.3 Example showing the impact of change in Feature Models 67

Figure 5.4 Example showing possible use cases for different stakeholders 69

Figure 6.1: Overview of the Feature Assembly Modelling process............................... 74

Figure 6.2: Overview of the different perspectives used to model the E-Shop 78

Figure 6.3: Feature Assembly Perspective Selection Process .. 90

Figure 6.4: FAM Meta-Model... 91

Figure 6.5: FAM feature notations: (a) Concrete Feature (b) Abstract Feature............. 92

Figure 6.6: FAM feature notations ... 94

Figure 6.7: FAM representation of the E-Shop’s Order Process feature 94

Figure 6.8: Semantic Definition of a Modelling Language ... 97

Figure 6.9 FODA model of PBX problem .. 104

List of Figures

XII

Figure 6.10 FAM model of PBX problem ... 105

Figure 6.11 FODA Representation of the GPL & FAM Representation of GPL 106

Figure 6.12 Support for changes and feature reuse a comparison 107

Figure 8.1: QPL System Perspective ... 123

Figure 8.2: QPL User Perspective .. 125

Figure 8.3: An excerpt of the QPL Functional Perspective 127

Figure 8.4: Functional Perspective - the Quiz-Question Assignment Feature 128

Figure 8.5: Functional Perspective - the Operational Settings Feature 129

Figure 8.6: Functional Perspective - the Answer Validation Feature 129

Figure 8.7: Functional Perspective - the Quiz Layout Feature 130

Figure 8.8: Functional Perspective - the Quiz Reporting Feature 130

Figure 8.9: GUI Perspective ... 132

Figure 8.10: GUI Perspective ... 133

Figure 8.11: GUI Perspective- Quiz Layout Feature ... 134

Figure 8.12: Persistent Perspective –Persistent QPL Feature 136

Figure 8.13: Persistent Perspective – Question Persistent Feature 137

Figure 8.14: Persistent Perspective – User Persistent Feature 138

Figure 8.15: Persistent Perspective – User-Quiz Info Persistent Feature 138

Figure 8.16: QPL Variable Data Model (Represented with EER) 140

Figure 8.17: Cultural Perspective ... 141

Figure 9.1: Overview of the Feature Assembly Process .. 147

Figure 9.2: Feature Assembly Reuse Framework Overview 149

Figure 9.3: Feature Pool meta-model ... 150

Figure 9.4: Excerpt of the System perspective for the QPL .. 151

Figure 9.5: The Feature Pool Features Extracted from the QPL FAM 152

Figure 9.6: Feature Assembly Process ... 154

Figure 9.7: Feature Assembly Process ... 156

Figure 10.1: Overview of the Feature Assembly Knowledge Representation Framework

 .. 160

Figure 10.2: FAM Meta-Model.. 163

Figure 10.3: Corresponding FAM Ontology Meta-Model visualized by OntoGraf 164

Figure 10.4: FAM Ontology Class Hierarchy Shown in Protégé 169

List of Figures

XIII

Figure 10.5: Explanation For an Inconsistency Detected by The Reasoner 175

Figure 10.6: Explanation for a Cardinality Error- Using Protégé 175

Figure 10.7: An Excerpt of the QPL System Perspective ... 176

Figure 10.8: Example using of Dependency_Reason and the Dependency_Owner

annotations in Protégé. ... 179

Figure 10.9: Browsing the FAM Ontology for QPL .. 180

Figure 10.10: Querying for Features Using the OWL2Query Plugin in Protégé......... 181

Figure 10.11: The FAM Ontology browser visualizing the QPL 183

Figure 10.12: The Perspectives Tab... 184

Figure 10.13: The Options Tab .. 184

Figure 10.14: The FAM Ontology browser’s Search facility. 185

Figure 10.15: The FAM Ontology browser’s Display facility. 186

Figure 10.16: Feature Pool meta-model ... 187

Figure 10.17: FP Ontology in Protégé, Showing Usage of the Product Line Class. ... 188

Figure 11.1: Excerpt of the CMS specifications .. 194

Figure 11.2: Excerpt of Comments on CMS’s First Models 195

Figure 11.3: Screenshot showing how Information can be found in Feature Assembly

Models - Applied to the models of Antidot. .. 198

Figure 11.4: Screenshot showing how Feature Assembly Models are visualized

allowing users to interact with the information contained in the models - Applied

to the models of Antidot. .. 198

Figure 12.1: Overview of the work presented in this thesis in relation to our research

questions. .. 204

Figure A. 2 Conceptual model of feature models .. 227

Figure. A.3. Feature model showing shipping cost example 228

Figure. B.1. OWL DL Axioms and Facts .. 237

Figure. B.2 OWL DL ... 238

XIV

List of Tables

XV

List of Tables

Table 2.1. Graphical Notation of Feature Types and Their Relations 23

Table 7.1: Relation between feature assembly model concepts and data modelling

concepts .. 114

Table 7.2: Annotations denoting relations between features and database concepts ... 114

XVI

List of Listings

XVII

List of Listings

Listing 2.1: Possible configurations of Car product line shown in figure 2.2 25

Listing 2.2: Possible configurations of Car product line shown in figure 2 25

Listing 6.1: FAM Feature Dependencies, notations and semantics. 96

Listing 8.1: Feature Assembly-to-data model mappings ... 139

Listing 10.1: DL Axioms Representing the Feature Class ... 165

Listing 10.2: DL Axioms Representing the Feature Dependencies 166

Listing 10.3: DL Axioms Representing the Abstract Feature Class 166

Listing 10.4: DL Axioms Representing the Concrete Feature Class 167

Listing 10.5: DL Axioms Representing the Option Feature Class 167

Listing 10.6: DL Axioms Representing the Rules that derive the Variation Points and

Variants .. 169

Listing 10.7: An Example Showing Possible Modelling Errors 170

Listing 10.8: An Example Showing a Cyclic Error ... 171

Listing 10.9: An Example Showing Redundant dependency....................................... 171

Listing 10.10: Rule to capture Inconsistency Error due to cyclic uses dependency 172

Listing 10.11: Rules to capture Inconsistency Errors cue to conflicting dependencies

 .. 173

Listing 10.12: Rules to Capture Redundancy Errors Due to Redundant Dependencies

 .. 173

Listing 10.13: Rules to Capture Cardinality Errors ... 173

XVIII

List of Abbreviations

XIX

List of Abbreviations

SPL Software Product Line

FAM Feature Assembly Modelling

FD Feature Diagram

FM Feature Model

FODA Feature Oriented Domain Analysis

FORM Feature Oriented Reuse Method

GPL Graph Product Line (a feature modelling benchmarking problem)

UML Unified Modelling Language

OCL Object Constraint Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

OWL Web Ontology Language

SWRL Semantic Web Rule Language

SPARQL

SPARQL Protocol and RDF Query Language (an RDF query

language)

QPL Quiz Product Line

SoC Separation of Concerns

XX

Chapter 1: Introduction

1

Chapter 1

Introduction

Increasing productivity, reaching more customers, and reducing costs are key aspects

for the success of today’s software development business. Furthermore, devices are

increasingly becoming more software demanding, increasing the pressure on companies to

deliver “quality” software at affordable prices and in a short time. One way to increase

productivity and reduce the time/cost is by adopting “mass customization” and “mass

development”. This can be achieved via incorporating variability
1
 early in the software

development process, thus such software is known as Variable Software [Bosch, 2000].

 Variable software has the ability to leverage the development of software from a single

product approach to a product line approach. In a product line approach, the base is put for

developing a set of variable assets which can be combined differently to make distinct products

instead of just one product [Bosch, 2000] [Asikainen, 2004]. Often such variable software is

known under names such as software product family or software product line [Bosch, 2000]. A

software product line is commonly defined to consist of a common architecture, and a set of

reusable assets. Together they are used systematically in producing individual products [Bosch,

2000]. The goal is to plan for the development of a set of closely related software products

rather than for a single product. This enables an efficient reuse of assets during the

development cycle, which is the main benefit of applying the product line technique. The

product line is then configured to produce different products. Each product derivable from the

product line encloses a different set of

assets which makes it distinct. The

process of producing different products

from the product line is referred to as

the configuration process. The

engineering of a software product line

is usually done in two phases: domain

engineering and application

engineering [Pohl et al., 2005]

[Anquetil et al., 2010]. The purpose of

domain engineering is to model the

commonality and variability between

the members of a software product

line. Reusable assets are produced by

domain engineering and then

specialised during application

engineering to derive the final products

as shown in figure 1.1.

1
 Variability is the ability of a system to be efficiently extended, changed, customised or configured for

use in a particular context [Asikainen et al, 2007].

Figure 1.1: Domain and Application engineering, modified after

[Pohl et al., 2005]

Chapter 1: Introduction

2

The research on software product lines is driven by the increase of software demand,

and accompanied with the large similarity in the software delivered to different customers

and/or for different platforms. On-going research in the field of software variability includes

topics that range from specifying and modelling software variability to actually implementing

and configuring this variability.

This thesis is situated in the domain of variable software. However, this is a broad

domain, therefore in the next section, section 1.1, the research context is described into more

details and section 1.2 provides the actual scope of the thesis. Section 1.3 deals with the

problem statement and section 1.4 provides the research questions. In section 1.5 we describe

the position of our research with regard to other scientific work in the context of the research.

The next section, section 1.6 elaborates on the research methodology used. Section 1.7 gives a

summary of the research contributions and finally section 1.8 provides an outline of the thesis.

1.1 Research Context

An essential step to realize variability is the adequate planning of variability. Planning

variability means carefully inspecting the domain of interest for information that allows

identifying the commonality and variability between members of the product line. This implies

properly understanding the domain needs and using the proper methods to represent this

knowledge, and being able to communicate this knowledge to the different people involved at

different moments in time. Such knowledge is not always straightforward or directly available;

the modelling practice should help express this knowledge. It is not always easily expressible as

the process involves many stakeholders with different concerns and speaking different

languages (e.g., end users, customers, marketing specialists, domain engineers, research and

innovation specialists, architecture engineers, project managers, etc.). Additionally, the

modelling technique and the models themselves should provide support for practitioners to

question their ideas and understanding of the system (or rather the system’s domain) under

consideration. Furthermore, the models should provide a medium for the different stakeholders

to communicate their understanding of the different aspects of the represented information.

In order to characterize the variability and commonality for a certain system, first there

is a need to explicitly identify the different characteristics of that system. In software product

line engineering, the term “feature” is used to refer to a prominent characteristic or capability of

a software system. Once these features are identified, it becomes important to distinguish which

of these features are variable and which are not. Variable features are those that are optional to

have in a product, i.e. they may exist in one or more products of the product line but not in all.

Features that exist in all the products of the product line are referred to as common features.

Variable features are associated with restrictions that govern their existence (or absence) in a

certain product; this information is vital for producing feasible product configurations.

Furthermore, there may be dependencies between features. Some features may be conflicting

while others will work together to achieve the goals of the software. Therefore, it is also

important to reveal the information on these feature interactions to allow safe configurations of

products. Failing to do so will result in misconfigured products which are erroneous,

inconsistent, and vulnerable.

Therefore, for the success of product line development, it is important to explicitly

model the above-mentioned information, i.e. it is important to represent which features are

variable and which features are common, the restrictions on feature selection, and the feature

Chapter 1: Introduction

3

interactions. The process of representing variability is referred to as variability modelling
2
.

Variability modelling techniques are usually based on feature modelling or decision modelling

[Czarnecki et al., 2012]. Both approaches have a slightly different emphasis. Feature modelling

approaches focus on commonality and variability modelling. Therefore features are first class

citizens in the feature modelling techniques, and result in a feature model which consists of a

set of features, their relations, and their dependencies. Mapping features to artefacts is not

always considered in feature modelling, however it is required if the resulted feature model will

be used to provide derivation support. Feature models are typically used to model features

belonging to the problem space however they have also been used to represent the solution

space (e.g. architecture [Weiler 2003] or source code level [Czarnecki and Eisenecker 2000]).

Decision modelling approaches focus on variability modelling and derivation support.

Therefore decisions are first class citizens in decision modelling techniques and result in a

decision model which consists of a set of decisions and their dependencies. Decision models

define the problem space variability; product derivation is supported through linking the

decisions to the reusable assets of the product line [Schmid et al., 2011]. Mapping decisions to

artefacts is an essential aspect of decision modelling approaches [Czarnecki et al., 2012].

Feature modelling approaches originate back to the Feature Oriented Domain Analysis (FODA)

method [Kang et al., 1990]; decision modelling approaches originate back to the Synthesis

method [Synthesis, 1993].

The first feature modelling technique FODA (Feature Oriented Domain Analysis) was

defined in the early 1990’s [Kang et al., 1990]. FODA describes how to define characteristics

of a certain domain and how to define their commonalities and variations. The feature models

in FODA have a graphical notation. FODA’s feature models show in a tree-based manner how

features relate to each other, either via a composition relation or via a type relation. In this

context, Kang defines a feature “as an increment in the program’s functionality”. Since then,

features have been a convenient term to refer to system capabilities when modelling variability.

A feature is considered as the smallest noticeable building block that adds to functionality in

software. Furthermore, features are abstractions that different stakeholders can understand.

Naturally, stakeholders speak of product characteristics i.e. in terms of the features the product

has or delivers. Furthermore, several extensions for the original feature modelling technique

were defined to extend its expressiveness and modelling capabilities. These visual

representations are all called feature models [Kang et al., 1990] [Van Gurp et al., 2001]

[Asikainen et al., 2007] or feature diagrams [Schobbens et al., 2007] [Czarnecki &Wasowski,

2007]. Feature models model the variability in software by defining all the possible features

that distinct the different products a product line could hold.

As already mentioned, each possible product of the product line encloses a different set

of features; this allows creating several distinct products. Defining and dealing with all the

different features of the software in order to be able to produce the different products is a

challenge due to several reasons: firstly, today’s products hold a large number of features with

different granularity, and which belong to different stakeholders. Secondly, features do not

exist in isolation; rather features interact with one another resulting in a set of dependencies

between these features. Those dependencies in addition to the variability restrictions on the

features influence the coexistence (or absence) of features in the final product(s). Thirdly, an

increase in the number of variable features increases the complexity of deriving member

products of the product line. The key issue for success is to have a balance between variability

and complexity [Codenie et al., 2009].

2
 It is also referred to as variability management in some of the literature of SPL. Throughout this text,

we will use the term variability modelling to refer to the modelling (i.e. identifying and specifying) of

variability. Variability management is used in literature of SPL as a much broader term that refers to the

process of managing variability through domain engineering phases.

Chapter 1: Introduction

4

Furthermore, a software product line often undergoes adjustments to meet the

continuous changes in customer and market requirements (i.e. evolution process). Keeping this

under control at an affordable cost is still a major problem. Increasing the scope and diversity

of the products that the product line delivers, results in several serious problems both at the

domain analysis level (i.e. modelling level) (see e.g., [Ajila and Kaba, 2008] [Acher et al.,

2009]) and at the architecture level (see e.g., [Van Ommering and Bosch, 2002] [Bosch, 2005]).

As the product line matures, its scope may significantly widen due to the introduction of new

features. Introducing new features propagates from the requirements to the design and then to

the implementation. To allow safely adding these newly defined features, dependency relations

can be used to anticipate and manage the software product (line) evolution process. For

example, some decisions need to be made in order to add or remove certain features in addition

to their relations and dependencies.

Furthermore, during the lifecycle of the product line (which is typically longer than that

of a single product) there is a need for different types of information, for example information

about sources of variability, variable features, dependencies between features, the different

stakeholders involved with these features…. etc.. All this information is important for taking

adequate decisions for proper variability management and variability realisation. Furthermore,

different people are interested in this information for different reasons, and therefore require

different abstraction levels and different levels of details. For example, developers need the

information in order to understand the knowledge about the different features and how they

influence each other (i.e. feature interactions and dependencies) when they have to update

software, while the management will need the information to explore which new products can

be produced at short notice.

1.2 Research Scope

In this thesis, we are interested in identifying and representing (i.e. modelling)

variability at a conceptual design level during the domain analysis phase. This means that we

will not consider implementation issues, realisation techniques for variability, or derivation

support (i.e. product line configuration) issues. Readers interested in these phases may refer to

the systematic literature review on variability realisation techniques by Svahnberg et al. [2005],

and the work of Rabiser et al. [2010], which provides a systematic literature review on product

derivation support.

The aim of this thesis is to bring variability modelling and variability information

management one step closer to companies. Because we are interested in modelling variability

for the sake of analysing and understanding it, our research is situated in the area of Feature

Oriented Variability Modelling as opposed to Decision Oriented Variability Modelling. We

believe that characterizing the software in terms of “features” (as done in Feature Oriented

Variability Modelling) is a convenient way for modelling variability and commonality, and the

term feature can be easily communicated to different stakeholders. Within the context of this

thesis variability information management refers to information management of variability and

commonalty information. Information management of how the variability is designed,

implemented, and later instantiated in the application engineering phase is out of the scope of

this thesis.

Several works have explored the relation between features and code artefacts (for

example, work of Heidenreich et al. [2008], Heymans et al. [2012], and Günther and Sunkle

Chapter 1: Introduction

5

[2012]). In addition, some commercial tools (e.g. DOORS
3
, Pure::Variants

4
) allow to create

traceability links between features and code artefacts. Although, investigating feature to code

relations is interesting and relevant, it is outside of the scope of this thesis. We refer to the

chapter on Future Work (chapter 12) for a brief discussion of this issue.

1.3 Problem Statement

By nature software development is a complex task; a great part of the complexity

comes from the huge amount of knowledge that needs to be explicitly defined and agreed upon

before the actual development process takes start. Additionally, there is the problem of

communicating this knowledge to the different people involved in the software development

process. Natural language, although very expressive, is also ambiguous and not appropriate for

conveying the intended meanings correctly. There exists a lot of knowledge but it is not always

related, nor consistent, complete, or accessible. This situation leads to making assumptions

about the intended meanings. The difficulty this creates is the continuous growing of the size of

these assumptions as we go deeper in to the development of the software, leading to

unanticipated results and sometimes failure, because the resulted software is doing something

different than expected. This is why conceptual modelling is considered an indispensable step

in software engineering.

 In the case of introducing variability, this situation becomes even more complicated.

Introducing variability to software increases the complexity of the software development

process even more. Therefore, it becomes necessary to deal with this additional complexity as

early as possible, and therefore also during modelling. The key issue for success is to have a

balance between the added flexibility the variability offers, and the complexity the variability

brings to the development cycle. To help reaching this balance, during modelling the involved

stakeholders should be able to share their knowledge and understanding of the domain, i.e. the

variable features, the reasons that drove this variability, and the complexity added by

introducing new features should be made explicit. For example, it is essential to understand

which features are variable, how they can vary (i.e. their allowed variations), and which

features can, or cannot, or must be combined within products. Furthermore, it is important that

the reason for variability does not get lost. At any point in the product line’s lifetime, it should

be possible to inspect information on the existing variable features and understand their impact

on the overall variability of the system. A recent study, [Chen and Babar, 2010] about variability

management in industrial settings, reports: “how to document variabilities in a way that is easy

to understand and use by different stakeholders is an issue”. Furthermore, ambiguities in

representing variability and commonality information about features may later on lead to

misconfigured software, i.e. software that holds incompatible features. It may also lead to lost

opportunities, i.e. some possible configurations are not found because they were “thought” as

being not possible. Therefore, ambiguous models should be avoided.

An additional difficulty in introducing and managing variability comes from the fact

that software systems have grown in terms of the number of features they hold and the

complexity of relations and dependencies between these features. Feature models can become

very large due to this increasing number of features ranging from a few hundred and jumping

up to a few thousand [Bosch, 2005]. This makes it difficult to keep a good overview of and

maintain the different relations between the different features of the system. It raises the need

to deal with the complexity while allowing efficient identification and management of the

3 DOORS, http://www-01.ibm.com/software/awdtools/doors/

4 Pure::Variants, http://www.pure-systems.com/pure_variants.49.0.html

http://www-01.ibm.com/software/awdtools/doors/

Chapter 1: Introduction

6

different features along with their variability and commonality. This calls for firstly, scaling

down the complexity of modelling such complex systems. Abstraction mechanisms are in

general used to deal with complexity. However, FODA and most subsequent FODA-based

feature modelling techniques lack explicit abstraction mechanisms to deal with complexity.

Usually, high-level features are decomposed into lower level features in the feature model, but

this simple abstraction mechanism does not allow dealing with the complexity introduced by

the many different aspects that need to be considered in modern software systems (e.g.,

hardware aspects, user interface aspects, network aspects, …etc.). One solution proposed to

overcome this issue was the introduction of different categories and the classification of each

feature to a certain category [Kang et al., 2002]. However, this categorisation is very fragile and

impractical (more details are given in chapter 5). In reality, a feature may have many faces

which make categorizing features into a single category a difficult task and therefore not a

viable solution for dealing with this kind of complexity.

Secondly, it calls for efficient inspection methods for the created models in order to

assist taking decisions. Indeed, different stakeholders would want to inspect the models (mainly

inspecting feature dependencies and relations) in order to find out where the complexity comes

from, where it can be scaled down, which features are causing an increase in the complexity,

etc. Current feature modelling tools have made dealing with large models not any easier [El

Dammagh and De Troyer, 2011] [Hubaux et al., 2010a], although some efforts have been done

in order to provide better visualization of large feature models [Cawley et al., 2008] [Nestor et

al., 2008] [Cawley et al., 2010]. According to Classen et al. [2011], one way out of this is by

introducing textual variability modelling languages rather than visual ones in order to overcome

the scalability - productivity problems. Yet, while textual modelling languages (e.g. TVL

[Classen et al., 2011], Clafer [Bąk et al., 2010]) may indeed improve productivity of software

engineers
5
, they lose the cognitive benefits a visual modelling language has to stimulate

communication and sharing of ideas between different stakeholders. The problem comes even

at the level of communicating features to customers, as reported by Chen and Babar [2010] in

their survey for variability management challenges.

Today, the development of software is usually distributed over different teams. As a

result, feature modelling will also be distributed. When different teams or persons are involved

in the modelling of different parts of the system, the management of the modelled information

about the different features is also more difficult. In addition, features are not isolated, and

many feature interactions may exist between models developed by different teams. Typically,

there are many relations between the features of one single component/subsystem. Moreover,

many interactions, dependencies and conflicts may exist between the features of different

components. As reported by Chen and Babar [2010] in a recent survey, practitioners have a

problem in harvesting and sharing knowledge in their variability models (e.g. feature models).

Therefore there is a need to make this knowledge explicit and readily available for everyone

involved in the modelling process and at different moments in time.

Furthermore, software product lines acquire their variability from the variability in the

domain (i.e. problem domain), from the need of different customers, and from software

innovation opportunities. Therefore, it is likely that how a feature contributes to the variability

of the system changes overtime. For example, in mobile phones five years ago multimedia

message sending was an optional feature, not supported by all phones, while today it has

become a mandatory feature supported by every new phone. Therefore, feature modelling

should allow (re)using the same feature (or rather feature specifications) with different

variability specifications in different contexts or at different points in time. Furthermore, we

5
 These textual variability languages fit best software architectures and engineers as pointed out by

Hubaux et al., 2011

Chapter 1: Introduction

7

should not limit this reuse of features during modelling to the concept of a (single) product line.

When features are designed well (and specified independent from their current variability

contribution) it should be possible to reuse them in different product (lines) belonging to the

same or related domains. This is because features are more stable in their core nature than how

they contribute to the variability of a system, as this will in general change based on new

emerging needs or driven by technology. Therefore, it should be possible to reuse existing

fragments of feature models. On the one hand, this could save time; on the other hand, reuse in

the domain engineering analysis and design phases could improve reuse possibilities at

development time. To the best of our knowledge, the issue of reusing previously defined

feature model fragments at the domain analysis stage has not been addressed. We have only

encountered works on reusing configuration data, i.e. common patterns in configuration

[Behjati et al., 2012], the objective of that work is to facilitate product configuration in case of

very large systems, which is not in the scope of this thesis.

1.4 Research Questions

This thesis addresses the problem of modelling commonality and variability of variable

software, as well as providing support for the management of this information by the different

stakeholders. The problem statement boils down to investigate how to support the variability

modelling practice for the current large scale and complex software by addressing current

challenges and limitations, on the one hand; and, to provide different stakeholders involved

with variable software the necessary support for the storing and querying of commonality and

variability modelling information, on the other hand.

Based on the observations made in the previous section, we have formulated the

following research questions and related sub questions:

RQ1: How can variability and commonality modelling in today’s large and complex

systems be supported by addressing current challenges and limitations?

 RQ1.1 Do current feature modelling techniques provide means to understand and

express complexity?

 RQ1.2 What are the limitations and practical issues of current mainstream feature

modelling techniques? How can we overcome them?

 RQ1.3 What kind of support can be provided during variability and commonality

modelling to deal with large and complex systems?

 RQ1.4 What guidelines and support can we provide to stakeholders in identifying

features and their variability and commonality?

 RQ1.5 How can the principle of “modelling with reuse” be introduced to feature

modelling?

RQ2: How can the knowledge in feature models and features be captured and unlocked?

 RQ2.1 How can the knowledge in feature models and features be captured?

Chapter 1: Introduction

8

 RQ2.2 How can communication and information sharing between the different

stakeholders be supported in order to comprehend and find information concerning the

features of the system, their dependencies, and variability?

1.5 Positioning of the Research

In this section we position our research with regard to other scientific work in the

context of our research. As already mentioned in section 1.2, our research is situated in the area

of Feature Oriented Variability Modelling as opposed to Decision Oriented Variability

Modelling.

1.5.1 Feature Modelling Methods

Numerous graphical variability modelling techniques/methods have been proposed and

many efforts have been made to classify and compare the different techniques/methods, for

example Svahnberg et al. [2005], Sinnema and Deelstra [2007], and Chen et al. [2009]. Yet, an

obstacle for their adoption by industry is that the conceptual foundation of the modelling

methods is in many cases unclear [Asikainen et al, 2007] [Chen et al., 2009]. Additionally, in

many methods the guidelines on how the models should be crated is vague. Very little attention

has been given to the process of variability modelling itself (i.e. the method).

The fact that the meaning of the modelling concepts is often unclear and no proper

guidelines or methods exist, has resulted in the fact that these modelling techniques are not well

adopted outside the research community (as reported by Hubaux et al [2010b]). Furthermore,

another challenging task for practitioners, as revealed in a recent study by Chen and Babar

[2010], is how to harvest and share the information in an efficient way.

Therefore, in this thesis we focus on providing rigorous meaning for the modelling

concepts used and providing proper methods and guidelines that practitioners can use to create

the models.

1.5.2 Feature Modelling for Large and Complex Systems

One of the purposes of this thesis is to provide means to facilitate variability modelling

of large and complex software systems. In this thesis we are looking to the complexity of a

software system from the viewpoint of understanding and representing the complexity

emerging from the large number of features, relations and dependencies. In this context, we

refer to the description of Herbert Simon [1981]:“Roughly, by a complex system I mean one

made up of a large number of parts that interact in a non simple way. In such systems, the

whole is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the

important pragmatic sense that, given the properties of the parts and the laws of their

interaction, it is not a trivial matter to infer the properties of the whole. In the face of

complexity, an in-principle reductionist may be at the same time a pragmatic holist.”

To deal with complexity, the principle of Separation of Concerns (SoC) has been used

by researchers of both the information systems and the software engineering communities. Also

in this thesis, we will use the principle of SoC to deal with the complexity of large systems.

In recent years, several researchers in the Software Product Line community have

investigated the SoC principle to deal with the complexity of feature models. For example, Tun

Chapter 1: Introduction

9

et al. [2009] use the SoC principle to relate requirements to feature configurations, for this

purpose three different types of feature models were created. Hubaux et al. [2011] use SoC to

provide different stakeholder views or perspectives on large feature models for the sake of

facilitating the configuration process. Similarly, Schroeter et al. [2012] use user specific

concerns to create different perspectives for configuring large feature models. These works

address SoC for the purpose of facilitating configuration by feature models; they do not address

the creation of feature models by using SoC. Acher et al. [2012] propose creating fragments of

feature models to overcome the large size and complexity of the one feature model paradigm.

They also propose operators to merge these fragments. The fragments represent units of focus,

no guidelines were proposed for how they are defined; it is entirely up to the modeller to decide

on this.

In this thesis, we propose a SoC approach for modelling variability and commonality in

large systems. We also present means to deal with the information these large models contain.

To the best of our knowledge there is no work on investigating the application of the SoC

principles to the conceptual modelling of feature models.

1.5.3 Reuse and Feature Modelling

Reuse
6
 in software engineering often refers to reuse of software artefacts (components,

code libraries, templates, etc.) at the code level. In the context of this thesis, we consider reuse

in the context of conceptual modelling, i.e. reusing of features or parts of feature models.

Modelling with reuse has been explored by several conceptual modelling researchers to

facilitate reuse at a conceptual modelling stage. It allows making use of previous knowledge

and experiences, which reduces the modelling time for new systems. For example, Welzer et al.

[1999] propose the reuse of conceptual models or parts of them for database design; Babenko

[2003] proposes the reuse of information in UML models for supporting partial reuse of UML

models; Batista et al. [2012] note that different information system projects usually have

common behaviour patterns therefore they propose a framework that facilitates reuse of these

patterns (using UML model fragments) during requirements engineering.

In this thesis, we focus on supporting feature modelling for systematic reuse (i.e.

modelling for reuse and with reuse) rather than having opportunistic reuse (i.e. modelling with

reuse). Moreover, supporting reuse at feature modelling level should also propagate to the

design and development allowing systematic reuse rather than having opportunistic reuse

between the different product lines. This is because features should later be mapped to code

artefacts. As already mentioned, several works have explored this relation between features and

code artefacts (for example, work of Heidenreich et al. [2008], Heymans et al. [2012], and

Günther and Sunkle [2012]). Investigating feature to code relations explicitly is however out of

the scope of this thesis. Therefore, the focus for reuse is at the modelling level.

1.5.4 Knowledge Management and Software Models

Applying knowledge representation and reasoning (KR), and knowledge management

research to the problems of software engineering (SE) has gained a lot of interest both in the

software engineering community and in the knowledge engineering community [Alexander

Borgida, 2007] [Bjørnson and Dingsøyr, 2008]. Many knowledge representation techniques are

6
 In software engineering reuse is the process of implementing or updating software systems using

existing software assets. [DOD Software Reuse Initiative, 1996]

Chapter 1: Introduction

10

used (more details are given in chapter 4), the Web Ontology Language (OWL [OWL Web

Ontology Language Overview, 2004]) in particular is favoured because it supports the open

world assumption, allowing to reason over incomplete knowledge. The separation of the

concepts of consistency and completeness mean that an evolving model can be checked for

consistency, without the incompleteness of the model causing a problem. In contrast, closed

world systems make no distinction between incomplete and missing knowledge; any fact not

known is assumed to be false [Russell and Norvig 2003].

Many synergies between software models and ontologies have been proposed, for

example in the area of reasoning on software models (e.g., Jekjantuk et al. [2011] apply

ontology reasoning to diagnose software models), in requirements engineering (e.g., Kossmann

et al. [2008] define an ontology driven requirements engineering methodology), in relating

feature models to ontologies (e.g., Czarnecki et al [2006] explore the synergy between feature

models and ontologies), in representing and validating Model Driven Architectures (MDA)

(e.g., Pahl [2005], Walter et al. [2010] propose using ontology encoding and reasoning for

MDA models), for agreement on models in large systems (e.g., Oberle et al. [2006] use

ontologies to formularise software models), for boosting software comprehension (e.g., Witte et

al. [2007] use ontologies to support software maintainers in understanding code allowing

querying and DL reasoning support over the code and its documentation).

In this thesis, we use knowledge management techniques and more in particular

ontologies to represent the variability and commonality information between features captured

by our feature modelling technique (see chapters 6 and 10 for more details). We benefit from

the use of this information representation by using the existing reasoning and management

support provided for ontologies. However, in addition, we support stakeholders to share and

comprehend the feature models by providing them with a dedicated browser that allows them to

interactively explore and query these models (see chapter 10 for more details).

1.6 Research Approach and Methodology

 To tackle the research questions

formulated, we have adopted the Design

Science Research Methodology (DSRM)

defined by Peffers et al. [2008], which

aims applying the design science
7

approach to fortify the theoretical

foundation of research on information

systems. The solution presented in this

thesis spans several research domains (as

shown in figure 1.2), namely software

variability modelling and particularly

feature modelling which is our problem

domain. In addition, to solve our research

questions we apply research from

knowledge engineering, particularly

conceptual modelling, and knowledge

representation and reasoning (in chapter

4 we provide some background

7
 Design science is fundamentally a problem-solving paradigm whose end goal is to produce an artefact

which must be built and then evaluated [Hevner and Chatterjee, 2010].

Figure 1.2: Research Areas related to the Feature Assembly

Approach Presented in this Thesis

Chapter 1: Introduction

11

information related to these domains).

The DSRM process includes six steps: 1) problem identification and motivation, 2) definition

of the objectives for a solution, 3) design and development, 4) demonstration, 5) evaluation, 6)

communication. The first step, problem identification and motivation have been covered by

section 1.3. In the rest of this section, we explain how the other steps have been realized.

1. Definition of the objectives for a solution

In order to define the objectives for the solution, we conducted an empirical literature

study for the variability modelling techniques, particularly feature oriented domain analysis

techniques because they have the objective of modelling variability and commonality of the

system’s features. The objective of our study was to determine the most dominant current

feature modelling techniques, understand what each of these techniques contributed to the

domain, and to identify their limitations in order to identify where improvements could be

made. The results of our feature modelling literature study are presented in chapter 2. While

doing so, we aimed rationalizing the significance of the problem mentioned in section 1.3 and

the appropriateness of the research questions listed in section 1.4 on tackling this problem in

order to provide a solution.

Furthermore, the research on modelling and managing software variability is quite

diverse and takes several perspectives. The problem statement (mentioned in section 1.3) spans

a number of issues that solutions in other perspectives have also tried to address. To distinguish

our proposed solution and to highlight how we address the problem differently, we have also

considered some of the significant works from these areas of research. This is presented in

chapter 3.

This study has set the foundations for our proposed solution which tries to answer the

research questions RQ1.1 and RQ1.2 by defining the current limitations and their consequences

on the proposed solution (this is presented in chapter 5). Answering these questions helped us

gain a better understanding of the problem and therefore define a set of objectives that should

be satisfied by the proposed solution. This step serves as input for our proposed solution.

2. Design and development of a solution

Our proposed solution is the Feature Assembly approach, which aims to satisfy the

objectives of a solution defined in the first research step.

There are three basic issues involved: Firstly, defining a proper formalism for

identifying and modelling knowledge about features, their relations, and dependencies, taking

into account the need for scalability, flexibility and feature reuse. The solution we propose for

meeting this objective is the Feature Assembly Modelling technique (presented in chapters 6

and 7) which answers RQ1 (except RQ1.5) by meeting the objectives for a solution that were

identified based on in the previous stage, these objectives are summarized below:

 Support feature modelling with separation of concerns. Identify what could be

relevant “concerns” and how they can be defined.

 Provide a method
8
 for feature modelling.

 Provide intuitive, unambiguous, and comprehensive feature modelling concepts

and notations.

 Provide modelling concepts to support reuse of features with different variability

specifications.

8
 A method is defined by March and Smith [1995] as a set of steps (an algorithm or guideline) to perform

a task.

Chapter 1: Introduction

12

Secondly, providing support for reusing features during modelling. The solution we

propose for meeting this is the Feature Assembly Reuse Framework (presented in chapter 9),

which is an approach that allows combining both variability and reusability at design time,

therefore gaining the merits of both techniques. The provided solution answers RQ1.5 by

meeting the objectives for a solution that were identified based on in the previous stage, these

objectives are summarized below:

 Define a framework that supports modelling with reuse.

 Define guidelines for modelling with reuse.

Thirdly, providing a managing mechanism for the information about features, their

relations, their dependencies, their description, their involved stakeholders, etc., such that this

information is readily available whenever there is a need to consult it. The solution we propose

for meeting this objective is the Feature Assembly Knowledge Management Framework

(presented in chapter 10) which answers RQ2 by meeting the objectives for a solution that were

identified based on in the previous stage, these objectives are summarized below:

 Support the capturing of information so that it is readily available for the different

stakeholders involved.

 Facilitate communication of information and collaboration between the different

stakeholders at any point in time through querying, browsing and visualization.

3. Demonstration

In order to demonstrate the usefulness of the presented solution, we have applied it to a

Quiz product line case (chapter 8). The presented quiz product line contains 246 features

defined in four perspectives, and holds 45 different feature dependencies. By this non-trivial

case we demonstrate the modelling of a relatively large and complex system using different

perspectives. The example also shows that the modelling notations and semantics are simple to

use, expressive, and easy to understand.

We also use the Quiz product line as a running example in subsequent chapters to

demonstrate the Feature Assembly Reuse Framework and the Feature Assembly Knowledge

Management Framework presented in this thesis.

4. Evaluation

Our evaluation is twofold, firstly, we show that the Feature Assembly Modelling

technique overcomes the limitations (mentioned in section 5.1) found in mainstream feature

modelling techniques (this is done in section 6.6). Secondly, we have tried out the proposed

Feature Assembly approach in a company to get feedback on the appropriateness of our

solution in real settings. This exploratory case study is presented in chapter 11.

5. Communication

We have communicated the solutions defined in this thesis to industry through the

VariBru
9
 research project (in which context this research has been carried out) in which we had

the opportunity to meet representatives of companies developing software (intensive) systems

and discuss their variability challenges and needs. We have also communicated the findings of

this thesis in well recognized international conferences and workshops (a list of publications by

the author in the context of this thesis is provided on page III).

9
 www.varibru.be

Chapter 1: Introduction

13

1.7 Research Contributions

The main contribution of this thesis is the Feature Assembly Approach that deals with

the problem descriptions given in section 1.3. This approach consists of a feature modelling

technique, a feature reuse framework, and a knowledge management framework. We will

discuss the contribution of each below.

1. The Feature Assembly Modelling Technique

As part of the Feature Assembly Modelling Technique, we introduced the Feature

Assembly Modelling Language, and the Feature Assembly multi-perspective approach.

Each brings the following contributions:

 The Feature Assembly Modelling Language

 A new feature modelling language with a few and simple modelling constructs

allowing a complete representation of the domain, i.e. the features, their

commonality, and variability, in addition to their feature dependencies.

 A language that forces more rigorous modelling by providing a clear separation

between composition and generalization-specification relations. This eases the

modelling decisions but also enhances reuse.

 A language that enables reusability of features by separating the specification of

the information about the variability from the definition of the features.

 The Feature Assembly Multi-Perspective Approach

 An approach that allows dealing with large and complex software during feature

modelling by using the notion of separation of concerns while modelling.

 An approach for defining features that allows abstracting from issues that are not

relevant for a particular aspect or viewpoint.

 The use of perspectives in feature modelling allows providing dedicated definitions

for the concept “feature” for its use in the different perspectives. This provides

more guidance to the users than the currently available very open definitions for

the concept feature.

 By expressing dependencies between features of different perspectives, the

different perspectives are connected with little effort. There is no need for a time

consuming integration phase.

 A dedicated perspective, the persistent perspective, for dealing with variability in

persistent data. We provide a method for deriving this perspective from the other

perspectives and for creating the corresponding variable data model.

2. The Feature Assembly Reuse Framework

The Feature Assembly Reuse Framework supports feature reuse during modelling by

storing features in a so-called Feature Pool, acting as a feature repository. It brings the

following contributions:

 A meta-data based repository that can be searched by modellers for reusable

features (possibly created by other modellers for other products).

Chapter 1: Introduction

14

 A continuously growing repository containing, for a company, all its reusable

features (whenever a new feature is defined, it is added to the pool).

 A method for creating feature models to define new variable software by

(conceptually) assembling features from the pool with new features, thus

supporting creating feature models with reuse.

3. The Feature Assembly Knowledge Management Framework

The Feature Assembly Knowledge Management Framework is a knowledge-based

framework that allows representing, and validating feature assembly models. It brings

the following contributions:

 An ontology (OWL) format to capture Feature Assembly models.

 A list of SWRL rules that define conflicts or inconsistencies in the models as well

as rules that infer information regarding variability.

 A framework that unlocks information captured in feature assembly models, as

well as new knowledge inferred by reasoning over the stored information to

support finding hidden dependencies, anomalies, and conflicts in very large

models.

 A dedicated Feature Assembly browser that allows stakeholders to visually explore

and interact with Feature Assembly models, as well as with a Feature Pool.

 An OWL representation of the Feature Pool is to support retrieving information

about reusable features, applying the same knowledge-based approach as for the

Feature Assembly Models.

1.8 Thesis Outline

The rest of the thesis is structured as follows.

 Chapter 2 describes the background in the domain of software feature modelling.

The chapter starts with introducing software product lines and gives an example of

a software product line. Next, the term feature modelling is introduced. This is

followed by reviewing the different available feature modelling techniques. Our

observations on the limitations of feature modelling techniques (Chapter 5) are

based on this review.

 Chapter 3 discusses related works on representing and analysing feature models,

the use of feature models for configuration, modelling with separation of concerns,

model integration and consistency checking, variability modelling and databases,

and feature model visualization.

 Chapter 4 provides some background information related to the domain of

knowledge management, as we adopted a knowledge management approach in this

thesis. The chapter starts with introducing the importance of conceptual modelling.

Next, some of the most widely used knowledge representation techniques are

listed. Next, the web ontology language OWL is introduced. Different techniques

that support interacting with OWL are also introduced. The chapter concludes with

related works in the domain of knowledge management applied to software

variability information management.

Chapter 1: Introduction

15

 Chapter 5 discusses the different challenges related to software variability

modelling. The chapter starts by discussing the limitations encountered in

mainstream feature modelling techniques. The second part of the chapter provides

the different challenges associated with managing the information contained in

variability models. This chapter acts as a knowledge acquisition study intended to

identify the requirements for our own approach.

 Chapter 6 presents the first major contribution of this thesis, the Feature Assembly

Modelling Technique, which is a feature oriented variability modelling technique.

First, the chapter discusses how a feature can be identified. Next, the multi-

perspective approach adopted in Feature Assembly is presented. Then, the Feature

Assembly Modelling Language is presented. We conclude the chapter with

providing evidence that the Feature Assembly Modelling Technique overcomes the

limitations mentioned in section 5.1.

 Chapter 7 presents the support provided by the Feature Assembly approach for

modelling data intensive variable software. The chapter presents the Persistent

Perspective, which is the perspective provided in Feature Assembly to define

persistent features (i.e. features related to persistent information). Having defined a

persistent perspective, the second part of the chapter presents how a link between

Feature Assembly Models and Data Models can be achieved.

 Chapter 8 demonstrates the Feature Assembly Modelling approach with an

elaborated example, a Quiz Product line. The Quiz Product line is modelled using

the Feature Assembly Modelling approach. Furthermore, the chapter illustrates the

flexibility of the presented modelling approach.

 Chapter 9 presents the second major contribution of this thesis, the Feature

Assembly Reuse Framework. The chapter introduces the concept of reusing

previously modelled features when modelling new products. The concept of a

“Feature Pool” is introduced a as a repository of reusable features. The presented

approach promotes reuse as early as the design phase therefore aiming to improve

the chances of reuse at an architecture and code level.

 Chapter 10 presents the third major contribution of this thesis, the Feature

Assembly Knowledge Management Framework. The presented framework shows

how knowledge in feature assembly models can be formally represented via an

OWL ontology. Next, the reasoning capabilities of OWL are used to help isolating

modelling errors and conflicts. Additionally, different possibilities for retrieving

information concealed in the represented models are provided. The chapter is

concluded with applying the same techniques to the Feature Pool, in order to

browse, visualize, and query the features stored in the Feature Pool.

 Chapter 11 provides an industrial demonstration for the approach presented in this

thesis. In this chapter, we present our experience in adopting the Feature Assembly

approach with the company Antidot.

 Chapter 12 presents the results of this thesis. A summary of the thesis is provided.

Possible future work is discussed.

16

Chapter 2: Variability Modelling Using Feature Models

17

Chapter 2

Variability Modelling Using Feature Models

In this chapter, we give an overview about the state of the art in software variability

modelling using feature models. We start by explaining software variability and commonality,

and why there is an increasing need to adopt it. Next, we discuss, in general, the feature

modelling technique used to model software variability and commonality at a domain analysis

stage. Next, we give an overview of the mainstream FODA-based feature modelling techniques

discussing the differences between these techniques in syntax, or semantics, or both. We also

give an overview of the techniques that extend UML for variability modelling.

2.1 Software Variability

Over the last years software production has been leveraged in terms of the complexity

and size. While complexity and size are growing leading to a longer production time, the

turnover
10

 time of software is decreasing resulting in more demand for new and more advanced

capabilities and causing productivity/profit challenge for software companies. Driven by

customers that are increasingly cost-conscious and demanding, more and more companies

compete on the basis of “giving customers exactly what they need”. More and more customers

require specifically tailored products that better meet their needs. Meanwhile, software is being

recognized as a powerful tool for differentiation and innovation. This has increased the interest

in techniques capable to deliver software that can easily be varied to meet the different needs of

different customers. At the same time, there is a need to deliver products rapidly in order to

decrease their time to market
11

 (TTM). In order to support the development of software that can

easily be varied, the concept of software variability was introduced. Introducing variability in

software allows varying some of the software capabilities and functionalities to meet the

requirements of different users. Companies have often used techniques such as software

customization (e.g., via configuration files that set some of the application parameters),

changing and editing existing code, using different code libraries and so on, to vary their

software. However, if providing many variants of a software product is done in such an ad-hoc

manner (e.g., via continuous customization of the existing code base), the variants of one

product could become very diverse making it too complex to keep track of all the produced

different variants. As an answer to this, the Software Product Line (SPL) [Bosch, 2000] (also

called Software Product Family [Asikainen, 2004]) approach was introduced to allow for rapid

development of software that could easily be configured to meet the different requirements of

10

 The turnover time of software refers to the lifetime of the software. Currently the advance of hardware

has motivated a demanding need for a similar advance in software. This has resulted in a shorter lifetime

for software products and an increased demand for new more advanced software capabilities.
11

 Time to market (TTM) is the length of time it takes from a product being conceived until it’s being

available for sale.

Chapter 2: Variability Modelling Using Feature Models

18

the various customers. The idea of product lines is not new; it has long been applied in industry

ranging from car manufacturing and home appliances (refrigerators, washing machines, etc.), to

consumer products.

Software Product Lines apply the concept of product lines defined in manufacturing to

the software development process. It moves the software development from a product-based

development to a product line-based development, in which multiple related products are

considered from the very beginning of the software development process. The product line can

be configured to produce different products meeting the needs of different customers. This is

achieved by introducing variability at an early stage in the planning and development of the

product line. Therefore, it allows for design and development of a set of closely related

software products rather than a single product. This enables efficient reuse of assets
12

 during

the development cycle, which in return will enable rapid development of related software

products. Therefore enabling better productivity, which is the main benefit of applying the

product line technique. A software product line is commonly defined to consist of a common

architecture, and a set of reusable assets. Together they are used in producing individual

products by using a different set of assets in each individual product. A software product line is

characterized in terms of its capabilities and characteristics. These are often referred to as

features. For example an E-Shop product line would have the features Shopping Basket,

Purchase, and Payment; while a mobile phone product line would have the features Call,

Accept Call, Text Message, and Multimedia Message.

Software product lines have gained a lot of attention from the industry due to their

ability to:

 Reduce the time to market: software product lines allows to rapidly create a family of

products rather than one product only, thus improving significantly the development

time of a new product because of efficient reuse of software assets.

 Increased bandwidth to pursue more markets: the development of a family of

products rather than one product allows companies to add different flavours to their

products to suit different markets and/or different categories of users. Therefore

generating more revenue and be competitive in new markets.

 Decrease the development time of products: in software product lines the reuse of

assets is planned beforehand therefore increasing the reuse opportunities between the

different members of the product line and decrease the time for development and

maintainability.

 There are several reports from industry on the added value for their organization from

adopting the product line approach, for example in the area of mobile phones [Maccari and

Heie, 2005], Car Periphery Systems [MacGregor, 2002], MRI systems (Magnetic Resonance

Imaging scanners) [Jaring et al., 2004], web browsers [van Gurp, 2001], printer software

[Svahnberg and Bosch, 1999], eHealth systems [Bartholdt et al., 2008], Revenue Acquisition

Management solutions [Clements and Northrop, 2002], and Web portals [Pettersson and

Jarzabek, 2005].

 As an example of the benefits of adopting a software product line approach, consider a

company developing Quiz systems and having different customers in somewhat different

domains. The company wants to deliver to each customer the Quiz system that best meets

his/her needs. Additionally, they want to make the best available reuse of the existing assets

and reduce their development time. For example, customer A is a primary school that requires a

12

 Software assets refer to all the artefacts that make up certain software; some artefacts maybe external

while others may be internal.

Chapter 2: Variability Modelling Using Feature Models

19

Quiz application for efficiently

examining their students. While

customer B, a higher education institute,

needs a more sophisticated version of

the application that could both handle

simple quizzes and exams to be used by

students for online examinations and

quizzes. The third customer, customer

C, is an organization that would like to

provide assessments for their new

employees allowing them to

interactively test their knowledge of the

organizations values and processes. The

fourth customer, customer D, is a

company that would like an application

which allows them to customize their

online marketing surveys. Adopting a product line approach, the software company could

recognize some similarity in the required four products. They could define a Quiz Application

product line that could be tuned to deliver the above-mentioned products (i.e. applications).

While all products will contain the same kernel, each product will contain a set of different

features so that each product satisfies the needs of its customer. Even more, such a product line

will allow them to serve more potential customers with similar requirements. A sample of the

four different products of a Quiz product line is shown in figure 2.1.

As already explained, the goal of software product lines is to plan for the development

of a set of closely related software products rather than for a single product. This enables

efficient reuse of assets during the development cycle. However, on the other hand, adopting a

software product line technique will increase the complexity of the software development

process. Identifying and managing the different features of the software in order to be able to

produce the different products is a non-trivial task as features are usually not independent. This

calls for methods and techniques to deal with the complexity of introducing variability within a

product line. The key issue for success is to have a balance between the added flexibility the

variability introduces, and the complexity this variability brings to the development cycle.

Software product lines are realized via introducing software variability at an early state

of the development life cycle. Software variability is defined as “the ability of a software

system or artefact to be efficiently extended, changed, customized or configured for use in a

particular context” [Svahnberg et al., 2005]. In software product lines, variability opportunities

are defined at the domain analysis phase. Domain analysis is defined by Neighbors [1984] as

“the activity of identifying objects and operations of a class of similar systems in a particular

problem domain”. Domain analysis is also known to be “The analysis of systems within a

domain to discover commonalities and differences among them”. The output of the domain

analysis stage is a definition of a domain model that characterizes the domain (i.e. the product

line capabilities). Variability opportunities are indicated in terms of variation points and

variants. Variation points denote the software characteristics at which variability opportunities

exist. Variation points are defined as “places in the design or implementation that together

provide the mechanisms necessary to make a software feature variable” [Svahnberg et al.,

2005]. Variation points are introduced due to market requirements, stakeholder

recommendations, customer requirements, innovation opportunities, or to increase business

opportunities. Variants denote the specific possibilities a feature may have. Generally a

variation point could be associated with any number of variants. Variation points are associated

with a binding time, which denotes the time in the development cycle that a certain variation

point will be bound to a specific variant(s). A variation point may be bound to a specific

Figure 2.1 Sample of Quiz Product Line possible products

Chapter 2: Variability Modelling Using Feature Models

20

variant(s) during the product architecture derivation, during compilation, during linking, or at

runtime [Svahnberg et al., 2005]. When a product is derived from the product line, for each

variation point only a subset of the variants are selected.

2.2 Software Variability Modelling

The software development process is by nature a complex process. Introducing

variability to software adds an additional level of complexity to the software development

process. To help cope with this complexity, there is a need for efficient variability modelling

techniques capable of modelling and documenting variability and commonality at an early

stage in the development process. In the context of software product lines, a variability

modelling technique should be expressive enough and easy enough to capture and represent

information about features composing the software product line, in addition to how these

features contribute to the variability of the software product line. The variability model should

express the product line capabilities by allowing the representation of commonality and

variability within the features. This makes it possible to clearly anticipate allowable feature

combinations. In addition, it allows anticipating variability opportunities that might have been

implicit or not identified before.

 Failing to properly model variability may lead to incorrect and usually difficult to

debug software. Furthermore, possible variability opportunities could be missed which means

missed business opportunities. For example, conflicting features not anticipated at modelling

time are more expensive to solve at a later stage in the development process. Furthermore, a

balance has to be made between variability and complexity. Modelling variability provides a

better understanding of the available variability possibilities and thus helps making better

decisions on which variability opportunities should actually be realized (i.e. actually

implemented in the final products) and which ones should be delayed or even ignored. Not all

variation points are necessarily realized in the final products, some may have more impact than

others. Furthermore, some variation points may be neglected due to their complexity or market

immaturity. Similarly, not all variants are of the same importance, a variation point could be

realized but only a subset of its variants is realized. Some variants may be of more importance

than others. In addition, modelling software variability is of great importance in order to

manage the commonalities and differences between the different variants of the product line at

an early stage. This allows defining an appropriate architecture and a reuse methodology that

best realizes the variability of the defined software product line. Variability models also help

domain engineers, project managers and architecture engineers in making decisions about when

to bind the variation points to specific variants. The appropriate binding time is influenced by

the amount of variability that will actually be realized and the variability realisation technique

that will be used.

In addition, variability models
13

 abstract from how the variability will be implemented.

This makes it easy to communicate the variability of the software product line to the different

stakeholders involved at an early stage of the development process. A variability model can act

as a base for communication between the different stakeholders, which usually have different

interests and requirements, sometimes even conflicting ones.

The phase in software development in which variability is analysed and variability

models are created is called the domain analysis. Kang et al. [1990] consider the domain

13

 In this thesis we stick to feature models. Architectural and realization variability models are out of the

scope of this thesis.

Chapter 2: Variability Modelling Using Feature Models

21

analysis process as a factor that can improve the software development process and promote

software reuse by providing a means of communication and a common understanding of the

domain. The authors define the domain analysis process as “the process of identifying,

collecting, organizing, and representing the relevant information in a domain based on the

study of existing systems and their development histories, knowledge captured from domain

experts, underlying theory, and emerging technology within the domain” [Kang et al., 1990]. In

case of variable software, domain analysis supports software design by providing a better

understanding of the commonality and variability that a certain domain holds. This allows

promoting feature reuse over a certain domain, by capturing domain expertise; domain analysis

can also support communication, tool development, and software specification and design

[Kang et al., 1990].

As already mentioned in the introduction of this thesis, variability modelling

techniques are usually based on feature modelling or decision modelling [Czarnecki et al.,

2012]. In Decision modelling approaches decisions are first class citizens in the decision

modelling techniques and the result is a decision model which consists of a set of decisions and

their dependencies. Decision modelling approaches (e.g. Schmid and John [2004], KobrA

[Atkinson et al., 2000], and DOPLER [Dhungana et al., 2010]) focuses on variability modelling

and derivation support; therefore how decisions relate to the solution artefacts is explicitly

modelled [Schmid et al., 2011]. On the other hand, Feature modelling approaches focus on

commonality and variability modelling. Therefore features are first class citizens in the feature

modelling techniques, and the result is a feature model which consists of a set of features, their

relations, and their dependencies. Feature models are typically used to model features

belonging to the problem space; however they are also used to represent features belonging to

the solution space. In the next sections, we will discuss feature models in general and then give

an overview of the characteristics and underlying concepts for the most commonly used ones.

2.3 Feature Models

Careful planning for variability and commonality is a key factor for successfully

gaining the merits of using software product lines. By careful planning of variability and

commonality we mean clearly defining and representing this information in an unambiguous

and well defined form at an early stage (i.e. within the domain analysis phase), this process is

referred to as Feature modelling. Feature modelling is the process of identifying and

representing the characteristics and capabilities of the product line, the output of this process is

referred to as the feature model.

The first feature modelling technique defined was the Feature Oriented Domain

Analysis (FODA) technique defined by Kang [1990], which was intended as a method for

domain analysis and modelling, and since then it has become an appealing technique to the

software research community for modelling variability in software. Although other domain

analysis techniques existed (e.g., STARS [Creps and Simos, 1992], and DSSA [Tracz et al.,

1993]), feature oriented domain analysis (FODA) was quickly adopted to effectively identify

and characterize the software product line capabilities and functionalities at an early stage.

FODA became used for the analysis of variable software due to its ability to represent and

model commonality and variability among applications of a certain domain. Each member of a

product line (i.e. product) is built up of a specific set of features which identify its capabilities.

Furthermore, FODA was applied to several case studies [Kang et al., 2002] and many

extensions to the original technique have been defined to extend the expressivity of FODA in

order to better meet the needs of modelling variability in software (more details in section

2.4.1).

Chapter 2: Variability Modelling Using Feature Models

22

FODA was intended to capture all the information in a domain in order to capture and

document domain knowledge. The power of using FODA is its ability to make knowledge

about a certain domain explicit and no longer in the heads of domain experts only. Feature

oriented domain analysis was used to identify where the applications for a certain domain are

similar and where they vary. Therefore FODA provides constructs that capture variability and

commonality within a certain domain. FODA captures the possible applications of a certain

domain abstracting from functionality or processes within these applications. This allowed

applying FODA to represent software variability. In FODA, applications in the domain are

described in terms of features. Features are abstractions that different stakeholders can

understand. Stakeholders usually speak of product characteristics i.e. in terms of the features

the product has or delivers [Kang et al., 2002]. Features are actually user-visible aspects or

characteristics of the domain [Kang et al., 1990].

In the context of software product lines, a software feature is commonly defined as an

increment in the program’s functionality [Batory, 2005]. A feature is considered the smallest

building block that adds to functionality of the product line, whether this functionality is

external (i.e. visible to users) or internal (operational and not directly visible to users).

Furthermore, features indicate capabilities of the system; these capabilities fulfil both the

functional and non-functional requirements of the software. Features can differ in their

complexity and size. Some features may be fairly simple such as colour, shape, language, or

text direction, while others may be more complex such as spelling check, shopping cart, or

purchase. Different stakeholders may be interested in different features of the system and at

different level of details.

FODA represents the domain in terms of visual feature models or feature diagrams.

Feature models relate features by means of a hierarchical tree structure, describing how features

are broken up into corresponding constructing (sub) features, with exactly one root node.

Features at the top of the hierarchy represent coarse-grained domain concepts while features at

the bottom of the hierarchy represent finer grained characteristics of the domain (and later on

the application). Feature Models also show how the features contribute to variability. Feature

models [Kang et al., 1990] [Van Gurp et al., 2001] model the variability in software by defining

all the possible features which different products of a product line could hold.

 A feature model not only shows the feature composition hierarchy but also shows the

relation of the feature with regard to their break up group. The link between a feature (source)

and its sibling feature (destination) is called a feature relation. Features could have a

mandatory feature relation, which identifies a compulsory whole-part composition relationship

(i.e. this relation holds for all valid products, thus the destination feature should be part of all

valid products). Features could also have an optional feature relation, which identifies a

voluntary whole-part composition relationship (i.e. the relation could hold in any valid product,

thus the destination feature could be part of any valid product). FODA captures variability in

the domain by means of voluntary whole-part relations and XOR feature relations. XOR feature

relations define the opportunity to select one feature from a group of features. Furthermore, In

FODA two feature dependencies were defined: Requires and Excludes. Such dependencies

describe how features interact with each other and control which features could exist and co-

exist together in the same product.

Feature models define the whole spectrum of possible products. How the features are

related in the feature model restricts the products that could be derived out of the product line.

A feature model defines the set of possible configurations of a certain product line. A

configuration is defined as a valid composition of features; a valid composition of features

results in a valid product, which is a product that meets all the restrictions specified in the

feature model.

Chapter 2: Variability Modelling Using Feature Models

23

Typically feature models hold three types of information: Features, Feature relations,

and Feature dependencies

 Features: Features are represented as nodes in the feature model. Features are

associated with a feature type, which indicates the type of relation they participate in.

In general, a feature can have both a group feature type (i.e. OR, AND, or Alternative)

and a single feature type such as optional or mandatory. Having more than one feature

type should be avoided as it leads to ambiguity and calls for normalizing the feature

model (feature model normalization will be discussed below, in section 2.3.1). As an

example, a feature model could indicate (by means of AND relations) that for a certain

feature all sub-features must be part of any product. An OR feature indicates that it is

part of an OR group which holds an OR relationship between its members. Commonly,

there are five possible feature types in a feature model [Kang et al., 1990] [Batory,

2005], which correspond to five possible feature relations; table 1 shows their

graphical notation and meaning in terms of a configuration [Bosch, 2000] [Van Gurp et

al., 2001].

Table 2.1. Graphical Notation of Feature Types and Their Relations, modified after [Batory, 2005]

(a) And indicates that any configuration that contains the parent

feature must contain all the sub-features (i.e. in any

configuration: if F1 is selected then F2 and F3 should also be

selected).

(b) Alternative indicates that any configuration that contains the

parent feature must contain exactly one of the sub-features, (i.e.

in any configuration: if F1 is selected then F2 or F3 should also

be selected).

(c) Or indicates that any configuration that contains the parent

feature may contain one or more of the sub-features, (i.e. in any

configuration: if F1 is selected then F2 and /or F3 should be

selected)

(d) Mandatory indicates that any configuration that contains the

parent feature must contain the specified sub-feature (i.e. in any

configuration: if F1 is selected then F2 should be selected)

(e) Optional indicates that any configuration that contains the

parent feature may or may not contain the sub-feature, (i.e. in

any configuration: if F1 is selected then F3 may or may not be

selected)

 Feature relations: Feature relations represent the branches in the feature model.

Feature relations denote a decomposition of features; the coarse grained characteristics

are at the top of the feature model tree while their fine-grained decompositions are at

the bottom of the tree. The leaf features indicate that no more decomposition is possible

(i.e. it adds no information in terms of variability and commonality of the product line

features). There are two types of relations, group relations and single relations, a

feature may combine both group relations and single relations. Group relations includes

grouping of related features which hold a generalization- specification relationship with

their parent feature. In terms of configuration a selection is made based on the type of

the group. Three groups of possible feature relations exist; AND group, in which all the

features belonging to this group should be selected in the final configuration, OR group

in which some of the features belonging to this group are selected in the final

configurations, and an alternative group in which only one of its member features gets

to be selected in the final configuration. Single relations on the other hand denote a

Chapter 2: Variability Modelling Using Feature Models

24

simple whole-part decomposition, in the case of mandatory relations the decomposition

is compulsory, while in the case of optional relations the decomposition is optional.

 Feature dependencies: The Requires and Excludes defined by FODA represent

additional constraints that control which features could exist and co-exist together in a

valid configuration. They could be visually represented in the feature model causing it

to become a directed graph (DG) or simply added as textual constraints in addition to

the tree representation of feature model. These feature dependencies are the ones

commonly used by successive feature modelling techniques.

Table 2.1 shows the graphical

notation of the different feature

types of FODA. The features

belonging to an And feature

group and the features of a

Mandatory type define the

features that are common to all

members of the product line.

Variability on the other hand is

represented by means of the

Alternative feature group

(which represents an XOR

relationship between the

member of the group), the OR feature group (which represents a voluntary relationship between

the members of the group), and the Optional relation (which represents a voluntary

relationship).

Figure 2.2 shows a sample feature model for a Car product line. The model represents

the following information: a car must contain the following features: a Body, an Engine, and

Transmission. It may optionally contain a Cruise. The engine could either be Electric or

Gasoline; a car may have both. The transmission of a car should either be Manual or

Automatic; only one should be selected, a car could not have both. Additionally there is a

Requires dependency between the Manual feature and the Gasoline features, i.e. whenever the

transmission is manual then a Gasoline engine should also be selected. The feature model in

figure 2.2 suggests that 10 possible variants of a car product can be derived. Listing 2.1 shows

the possible configurations for the Car product line. The process of deriving possible valid

products from a product line is called the product configuration; each possible product is called

a feasible configuration of the product line.

Car1= Cruise + Transmission {Automatic} + Engine {Electric} + Body

Car2= Cruise + Transmission {Automatic} + Engine {Gasoline} + Body

Car3= Cruise + Transmission {Manual} + Engine {Gasoline} + Body

Car4= Cruise + Transmission {Automatic} + Engine {Electric, Gasoline} +

Body

Car5= Cruise + Transmission {Manual} + Engine {Electric, Gasoline} + Body

Car6= Transmission {Automatic} + Engine {Electric} + Body

Car7= Transmission {Automatic} + Engine {Gasoline} + Body

Car8= Transmission {Manual} + Engine {Gasoline} + Body

Figure 2.2: Feature Model of Car Product Line

Chapter 2: Variability Modelling Using Feature Models

25

Car9= Transmission {Automatic} + Engine {Electric, Gasoline} + Body

Car10= Transmission {Manual} + Engine {Electric, Gasoline} + Body

Listing 2.1: Possible configurations of Car product line shown in figure 2.2

As illustrated by the example, feature models do not only act as a representation and

documentation of the variability and commonality in the system, but they also provide the

possible solution space for the set of possible products that could be derived from the modelled

software product line. Failing to correctly model the features or correctly indicating how they

relate to variability (feature relations) and relate to one another (feature dependencies) results in

wrong products or products that do not anticipate the capabilities of the product line. This is

because, finding possible configurations is strictly speaking, a constraint-solving problem in

which a solution

(configuration) is found that

satisfies the relations and rules

defined in the feature model. A

feasible feature model is one

that holds no (logical)

contradictions or conflicts

within the different

dependency constraints

between features.

 It should be noted that

changing any aspect in the

model means also a different

set of possible products. For instance, in the example, a change in the Requires dependency to

state that, Automatic transmission requires Gasoline engines would give a different set of

possible car products (see figure 2.3). Listing 2 shows the new set of possible products.

Car’1= Cruise + Transmission {Automatic} + Engine {Gasoline} + Body

Car’2= Cruise + Transmission {Manual} + Engine {Gasoline} + Body

Car’3= Cruise + Transmission {Manual} + Engine {Electric} + Body

Car’4= Cruise + Transmission {Automatic}+ Engine {Electric, Gasoline} + Body

Car’5= Cruise + Transmission {Manual}+ Engine {Electric, Gasoline} + Body

Car’6= Transmission {Automatic} + Engine {Gasoline} + Body

Car’7= Transmission {Manual} + Engine {Gasoline} + Body

Car’8= Transmission {Manual} + Engine {Electric} + Body

Car’9= Transmission {Automatic} + Engine {Electric, Gasoline} + Body

Car’10= Transmission {Manual}+ Engine {Electric, Gasoline} + Body

Listing 2.2: Possible configurations of Car product line shown in figure 2

The result set shown in listing 2 shows that three configurations (Car’1, Car’3, and

Car’8) are new.

The above example clearly shows the importance of modelling variable software at

domain analysis level. Establishing a model to express variability and commonality ensures a

Figure 2.3: Feature Model of Car Product Line

Chapter 2: Variability Modelling Using Feature Models

26

better understanding of the capabilities of the product line. Furthermore it acts as a formal

documentation of these capabilities within the lifetime of the product line. In addition,

verifying the correctness of the established models at domain analysis time helps preventing

errors at a later phase of the software product line development. Of course, the significance of

an error varies according to the problem being modelled and the effect of the error itself on the

resulted model. Nevertheless, for reliable and robust variable software, inconsistent and

conflicting feature models should be avoided, as they will lead to the creation of incorrect and

usually difficult to debug software (incorrect combinations of features could be made). In

addition, possible products could be missed which means missed business opportunities.

2.3.1 Normalizing Feature Models

It should be noted that, in FODA (and subsequent feature modelling techniques),

combining more than one type of features in a single relation (e.g., an Or relation containing

mandatory siblings) is not prohibited. Yet it increases the complexity of the model and leads to

redundant relations. Feature models without redundancy (i.e. each branch only contains a single

type of features) are called Normalized Feature Models [Czarnecki, and Eisenecker, 2000] [von

der Massen and Lichter, 2004].

Normalization is defined as transforming combinations of child features with different

types of variability to child features with a single type of variability. As an example, figure 2.4

shows possible normalizations for alternative features. Figure 2.4.a shows how an optional

alternative feature (i.e. gives the possibility to select zero or one of the alternative features) is

reduced to an alternative feature with an optional parent feature. Figure 2.4.b shows how the

mandatory alternative (i.e. gives the possibility to select exactly one of the alternative features)

is reduced to an alternative feature with a mandatory parent. Similarly, a combination of an

optional OR could be used to represent the possibility to select zero or more of the OR features.

While a mandatory OR could be used to indicate the possibility to select one or more of the OR

features. Figure 2.5 shows possible normalization by using the cardinality based feature models

described in section 2.4.1, in which each OR group composition is associated with a minimum

and maximum cardinality stating the minimum and maximum number of sibling features that

are allowed to be selected in a valid configuration

Figure 2.4 Possible normalization for

a)optional b)mandatory alternative features

Figure 2.5 Possible normalization for

a)optional b)mandatory OR features

Chapter 2: Variability Modelling Using Feature Models

27

2.4 Mainstream Feature Modelling Techniques

Over the past two decades, several feature modelling techniques have been developed

that aim supporting variability representation and modelling. Several extensions to FODA (the

first feature modelling language) have been defined to compensate for some of its ambiguities,

to introduce easier to use modelling concepts, or to introduce new concepts and semantics to

extend FODA’s expressive power. They all keep the hierarchical structure originally used in

FODA, accompanied with using some different notations.

In order to answer our first research question (RQ1; How can variability and

commonality modelling in today’s large and complex systems be supported by addressing

current challenges and limitations?) we have first studied existing feature modelling techniques

and identified their characteristics, in order to identify and analyse their limitations (which

serve as input for our proposed solution, this will be discussed in chapter 5).

We describe here the most common FODA based feature modelling techniques (FORM

[Kang et al., 1998], FeatureRSEB [Griss et al., 1998], [Van Gurp et al., 2001], [Riebisch et al.,

2002], PLUSS [Eriksson et al., 2005], and Cardinality Based Feature Models [Czarnecki and

Kim, 2005]), which provide a broad overview of the characteristics of mainstream feature

models.

2.4.1 Feature-Oriented Reuse Method (FORM)

Feature-Oriented Reuse Method (FORM) [Kang et al., 1998] extends FODA by adding

a domain architecture level which enables identifying reusable components. It starts with an

analysis of commonality and variability among applications in a particular domain and

identifies features of these applications. Features are classified in terms of four different

categories (also called layers): capabilities, domain technologies, implementation techniques,

and operating environments. Capabilities are user visible characteristics that can be identified

as distinct services provided by the application (e.g., call forwarding in the telephony domain),

operations that the application performs (e.g., dialling in the telephony domain), and non-

functional characteristics (e.g., performance) that affect the feature selection process. On the

other hand, domain technologies (e.g., navigation methods in the avionics domain) represent

the way of implementing services or operations within the application domain. Implementation

techniques (e.g., synchronization mechanisms in the telephony domain) are generic functions or

techniques that are used to implement services, operations, and domain functions, these

techniques can be shared by more than one domain. Operating environments (e.g., operating

systems) represents environments in which applications are used.

Common features among different products are modelled as mandatory features, while

different features among them may be optional, or alternative features Alternative relations are

still supported as with the original FODA. A feature model is created with AND/OR nodes, the

feature model shows the classification of the features based on the previously mentioned

categories. The feature model explicitly represents three types of relations: composition,

generalization/specification and implemented by. While the first two relations were originally

introduced in FODA, the new implemented by dependency was introduced to relate features in

terms their functionality, and later on implementation at an architecture level. Figure 2.6 shows

a sample feature model using the notation and semantics defined in FORM.

Chapter 2: Variability Modelling Using Feature Models

28

Figure 2. 6 A feature model in FORM for the Private Branch Exchange (PBX) product line, [Kang et al.,

1998]

In addition, because it becomes quite complex to link features belonging to different

categories, a textual specification language, next to the hierarchical structure, was used to

characterize the system. With respect to feature dependencies, the excludes and requires

dependencies originally defined in FODA are still used.

2.4.2 FeatureRSEB

FeatureRSEB [Griss et al., 1998] aims at integrating feature modelling with the Reuse-

Driven Software Engineering Business (RSEB) [Jacobson et al., 1997]. RSEB is a systematic,

model-driven approach to large scale software reuse, applied to an organization engaged in

building sets of related applications from sets of reusable components. In RSEB explicit use

case models are central to all steps that define architecture, subsystems and reusable objects.

Therefore, FeatureRSEB uses UML use case diagrams as a starting point for defining features

and their variability and commonality. The FeatureRSEB feature models created are based on

the functionality provided by the many use cases that represent the different possible user

requirements for applications of a certain domain. This rational was based on the fact that UML

use cases are presumed to get a better understanding of the user requirements within a certain

application domain, while feature models define how in one domain, these applications may

differ based on the variability that can be imposed by the different possible end product

features. Furthermore, feature models are capable of defining the selection mechanism for the

final features within any product variant.

Chapter 2: Variability Modelling Using Feature Models

29

In FeatureRSEB,

feature models classify

features to optional,

mandatory (similar to

FODA) and variant. A

variant feature is used to

indicate alternative features

and OR features, i.e. it

represents any set of

features in which selectivity

is allowed. The OR

selection option was

introduced to represent the

selection of some options

from many relation. A

distinction is made between

the two in terms of the

notation used, a filled

diamond indicates OR

selectivity while a hollow

diamond indicates

Alternative selectivity.

Additionally, the concept of

variation points was added

as part of the model,

variation point features are

known as vp-features.

Branches in FeatureRSEB indicate composition/decomposition relations between features. The

excludes and requires dependencies originally defined in FODA are used to represent

constraints between features. They are modelled as separate constraints with respect to the

diagram. Figure 2.7 shows a sample FeatureRSEB feature model for Rapid Telephone Service

Creation product line.

2.4.3 van Gurp et al. Feature Graph

Van Gurp et al. [2001] define a new feature modelling method based on FeatureRSEB.

They refer to the resulted feature models as feature graphs. The authors consider a feature as a

construct that should group related requirements. Features in this method are defined as “a

logical unit of behaviour that is specified by a set of functional and quality requirements”. They

use the same feature types as proposed by FeatureRSEB, which are mandatory feature, optional

features and variant features. Variant features are either OR features or XOR features. In

addition they propose a new feature type named external feature. External features are features

offered by the target platform of the system. While not directly part of the system, they are

important because the system uses them and depends on them. Therefore they have found them

to be of importance at the configuration phase.

Figure 2.7 A feature model in FeatureRSEB for Rapid Telephone Service

Creation product line, [Griss et al., 1998]

Chapter 2: Variability Modelling Using Feature Models

30

Additionally, the authors added the notion of binding time to their feature graphs. The

binding time information indicates the time in the development process that a variation point

will be bound to a specific variant. The authors classify variation points to open variation

points and closed variation points. In an open variation point, new variants may be added to the

set of variants

associated with the

variation point. In

a closed variation

point no new

variants can be

added once the

variants for the

variation point are

defined. Figure 2.8

shows a sample

feature graph for a

mail client product

line. The excludes

and requires

feature

dependencies

originally defined

by FODA are still used to denote restrictions between features.

2.4.4 Riebisch et al. Feature Models

 In 2002, Riebisch et al. proposed to add multiplicity to feature groups to indicate the

number of features that are allowed to be selected from each branch. This need comes from the

ambiguity of existing feature modelling techniques when it comes to selection of features from

within a group. For example, OR groups indicate the selection of some features from many but

the exact number of

allowed features remains

unexpressed. Riebisch et

al. propose that a set has a

multiplicity that denotes

the minimum and

maximum number of

features to be chosen

from the set. Possible

multiplicities are: 0..1, 1,

0..n, 1..n, m..n, 0..*, 1..*,

m..* (m and n are
integers). Visually, a set

is shown by an arc that

connects all the edges that

are part of the set. The

multiplicity is drawn in

the centre of the arc.

Furthermore, they

propose that relations between features that are located in different not adjacent parts of the

graph should not be shown on the feature model diagram because this reduces the clarity of the

Figure 2.8 van Gurp et al. feature graph for a mail client product line, [Van Gurp et al. ,

2001]

Figure 2.9 Riebisch et al. feature model for a library Product line, [Riebisch et al,

2002]

Chapter 2: Variability Modelling Using Feature Models

31

diagrams. Instead, such relations can be described in a textual form rather than in the feature

model. Figure 2.9 shows a feature model for a library product line represented in the Riebisch

et al. notation. Note that the filled circles denote mandatory features, while the hollow circles

denote optional features. Hollow circles for features in a feature group only indicate the

direction of the decomposition. No distinction is made between OR and Alternative features,

the feature model holds multiplicities for feature groups.

2.4.5 PLUSS

 FODA

originally introduced

mandatory, optional,

and alternative

relations between

features. PLUSS

[Eriksson et al.,

2005], which is the

Product Line Use

case modelling for

Systems and Software

engineering,

introduced the

notation of multiple

adapter to overcome

the limitation of not

being able to specify

the at-least-one-out-of many relation in FODA. PLUSS also renamed alternative features to

single adaptor features following the same naming scheme. The modelling notation was also

slightly changed in PLUSS to meet the needs of the modified model, yet it remained a

hierarchical tree structure based on the notation of FODA.

PLUSS represents mandatory and optional features similar to FODA; a filled black

circle represents a mandatory feature and a non-filled circle represents an optional feature. It

introduces new visual constructs to represent single adapter and multiple adapter features.

Single adapter features are represented by the letter ‘S’ surrounded by a circle. Multiple

adaptor features are represented by the letter ‘M’ surrounded by a circle. Similar to FODA, the

excludes and requires dependencies originally defined in FODA are used to represent

constraints between features. Figure 2.10 shows a PLUSS feature model for a Motor Engine

System product line.

2.4.6 Cardinality Based Feature Models

Cardinality Based Feature Models (CBFS) [Czarnecki and Kim, 2005] associate the

concept of cardinality with each feature in the feature model. A feature model then represents a

hierarchy of features, where each feature has a feature cardinality. Two types of cardinality are

defined: clone cardinality and group cardinality. A feature clone cardinality denotes how many

clones of the feature (with its entire subtree) can be included in a specified configuration. A

group cardinality is an interval of the form [m..n], where 0 ≤ m ≤ n, and m and n are integers

that denote how many features of the group are allowed to be selected in a certain

configuration. Features still had one of four feature types AND, OR, Alternative, and Optional.

Figure 2.10 PLUSS feature model for a Motor Engine System product line,

[Schobbens et al., 2007]

Chapter 2: Variability Modelling Using Feature Models

32

In addition, the notation of feature attribute was defined. A feature attribute indicates a

property or parameter of that feature; it is has a value that could be a numeric or string value.

At most one attribute per feature is allowed. If several attributes are needed, a set of

subfeatures, where each subfeature having an attribute, can be introduced. Additionally, a

feature attribute value could be a reference to another feature; in this case it is called a feature

reference attribute

The notation of FODA was extended to add the indication of cardinality and add a new

notation that represents feature attributes. Two types of constraints are allowed, constraints

between features and constraints on the value of the feature attributes (expressed in OCL
14

).

The dependencies implies and excludes are used to represent constraints between features.

Figure 2.11 shows a sample cardinality based feature model for an E shop product line.

Figure 2.11 CBFM feature model for an E shop product line, [Czarnecki et Kim, 2005]

2.5 Feature Modelling Methods based on UML

UML (Unified Modelling Language) is a well-accepted modelling language for

modelling software applications. Therefore, there were several proposals for extending UML to

support variability modelling. UML variability modelling techniques use the concept of class

rather than the concept of feature to model domain concepts and product line requirements.

They model variability via adding variability profiles to UML for representing variability with

UML models (e.g., [Clauss, 2001], [Ziadi et al., 2003], [Gomaa, 2005]). These techniques

aimed linking the variability of the domain (and later application) with the different UML

models created at design time. We list here some of the most well-known attempts to extend

UML to support the representation of variability information.

2.5.1 Clauss UML Variability Stereotypes

Clauss [2001], introduced two stereotypes to model variability, namely:

<<variationpoint>> and <<variant>>. These stereotypes can be applied on any UML

element that holds variability, i.e. a class, a component, a property or a package. It also applies

to UML elements that hold behaviour such as collaborations, associations and methods. In

order to differentiate variation points from each other, each variation point is given a unique

name. This name can also be used to refer to that particular variation point in the

documentation. A variation point implies some tagged values determining the binding time and

14

 Object Constraint Language, http://www.omg.org/spec/OCL/

Chapter 2: Variability Modelling Using Feature Models

33

multiplicity of variants. The latter determines how many variants can be bound at binding time.

The usage of each variant can be formally specified in a condition that determines when the

variant is to be included at configuration time. Similarly variants contain a tag that relates them

back to their variation points. For each variant a tag that holds the name of its parent variation

point is added. In the meantime, feature interactions are modelled with dependencies similar to

the ones defined in feature models. Two stereotypes are used to model dependencies

<<requires>> and <<excludes>>. Additionally, the stereotyped <<evolution>> is used to

represent evolutionary constraints between elements.

2.5.2 Ziadi et al. UML Variability Profile

Ziadi et al. [2003] defined a UML Profile which contains stereotypes, tagged values

and constraints and which extends the UML meta-model to represent and model variability.

These stereotypes are applied only to UML class diagrams and sequence diagrams. The

stereotype <<optional>> is used to indicate a class that is optional, i.e. can be omitted in some

products (similar to optional features in feature models). The representation of

generalization/specification relations which denote variability is done using UML inheritance

and stereotypes. Each variation point will be defined by an abstract class and a set of

subclasses. The abstract class will be defined with the stereotype <<variation>> and each

subclass will be stereotyped <<variant>>. An OCL constraint is defined such that each variant

belongs to only one variation point.

The authors also make a distinction between the variability stereotypes defined for

class diagrams and those defined for sequence diagrams. For variability in sequence diagrams,

two stereotypes were introduced namely <<optionalLifeline>> and <<optionalInteraction>>.

Optional objects within the sequence diagram are specified using the stereotype

<<optionalLifeline>>, while the stereotype <<optionalInteraction>> identifies optional

interactions between objects. Additionally, the stereotype <<variation>> indicates that the

interaction is a variation point with two or more interaction variants. The stereotype

<<variant>> indicates that the interaction is a variant behaviour in the context of a variation

interaction. Constraints between classes are modelled using OCL.

2.5.3 Gomaa Variability Metaclasses

In [Gomaa, 2005] another attempt was made to combine UML and feature models.

Features are modelled as metaclasses, UML stereotypes are used to represent the different types

of (variable) features that are supported by FODA. Additionally some additional feature types

were also introduced to the model to increase its expressiveness. The stereotypes defined for

feature types are: <<optional feature>>, <<parameterized feature>>, <<common feature>>,

<<default feature>>, and <<alternative feature>>. <<optional feature>> defines an optional

feature. <<parameterized feature>> defines a feature that takes a parameter as its value (e.g. a

colour feature would take the actual colour selected at binding time). <<common

feature>>defines a mandatory feature.

Feature groups map the OR and Alternative nodes in FODA, they are defined using the

stereotype <<feature group>> with the following stereotypes to indicate the selection

guidelines <<zero-or-one-of feature group>>, <<zero-or-more-of feature group>>,

<<exactly-one-of feature group>>, and <<at-least-one-of feature group>>. A feature group is

represented as a UML generalization/specification relationship. <<alternative feature>>

defines an alternative feature within a feature group. <<default feature>> defines a feature

that should always be selected from within a feature group. A note about this technique is that it

Chapter 2: Variability Modelling Using Feature Models

34

considers features as classes in the UML diagram (i.e. it assumes a one to one mapping

between features and classes).

2.5.4 Korherr and List UML Variability Profiles

Korherr and List [2007] define a new variability profile for UML 2. Two stereotypes

are defined to denote variability, <<variationpoint>> which defines a variation point and

<<variant>> which defines a variant. Variation points and variants are represented via a UML

generalization/specification relationship. A generalisation Set defines a specific set of

generalisation relationships. The metaclass describes how a general classifier (or superclass)

may be divided using specific subtypes. Furthermore it has two meta-attributes with Boolean

values, namely isCovering and isDisjoint. If isCovering is true, then the generalisation set is

complete, i.e. selecting a variant is obligatory, that is equal to multiplicity 1..*, otherwise it is

incomplete, i.e. selecting a variant is optional, this is equal to multiplicity 0..*. On the other

hand if isDisjoint is true, then the generalisation set is disjoint (i.e. the variants have an XOR

relation), otherwise it is overlapping (i.e. the variants have an OR relation). The excludes and

requires dependencies between variation points and variants are supported via the

<<excludes>> and <<requires>> stereotypes respectively. Additional constraints such as

parameter values or name value pairs can be added in OCL.

2.6 Summary

In this chapter, we gave a brief introduction on variable software and in particular

software product lines and we gave an example of a possible software product line for the

development of a family of related products rather than developing one product at a time.

We have discussed that although software product lines may ease the development

process and leverage the quality of the developed software as well as reduce the cost of

development and time to market, it adds another level of complexity to the software

development process as one needs to deal with the different variants of the product line and

their commonalities and variabilities. For this reason, we need to carefully plan and model

variability at an early stage. For this, we focused on feature modelling, as this is the de facto

standard for modelling variability in software product lines.

Feature models are used to represent commonality and variability in a certain domain,

leading them to be well suited for the domain analysis and modelling of software product lines.

We explained the principles of feature models for modelling variability and commonality in

software systems. Additionally, we discussed the importance of the term feature in

characterising capabilities of the software to be modelled, which adds more convenience to

using feature models. We have also explained the main feature modelling techniques; most of

them based on the original feature modelling technique FODA and how these techniques differ

in their notation and semantics. Additionally, we showed some other techniques that use UML

profiles and stereotypes for modelling variability in software product lines.

Chapter 3: Related Work

35

Chapter 3

Related Work

As already mentioned in the introduction of this thesis there are quite a number of

topics that this thesis relates to. In this chapter we will review works related to the topics of this

thesis. We will first start with the works concerned with representing and analysing feature

models; which feature models are represented with knowledge representation techniques and

used to automatically or semi automatically analyse feature models (section 3.1). Next (section

3.2) we will consider works on using feature models for configuration of software product

lines, in which automated and semi-automated feature analysis techniques are used for

obtaining the possible products derived from a feature model. We also consider works on

modelling with separation of concerns (section 3.3) which is a principle that could be applied in

many different ways; we deal with some works that investigate its application to software

modelling. We also consider works that investigate how this principle has been applied in the

domain of feature modelling. Next, we discuss works related to model integration and

consistency checking, which are techniques to merge conceptual models and check the

consistency of the merged conceptual model (section 3.4). Next, we mention the works that

introduce the concept of multiple product lines, and on modelling multiple product lines

(section 3.5). We also discuss the efforts done on relating variability in the application to

variability in data and data schema (section 3.6). Finally, we conclude this chapter by listing

the efforts on visualization of feature models (section 3.7).

3.1 Representing and Analysing Feature Models

In this kind of work, the focus is on the semantics of feature models in order to better

understand the information a feature model holds, such as understanding the variability

opportunities that the feature model represents, and checking its feasibility (i.e. there will exist

some feasible products out of this model, without actually finding these products). In these

works, feature models are translated via knowledge representation techniques to formal

knowledge models that can be automatically or semi automatically processed.

Having no agreement on common semantics for feature models has lead Bontemps et

al. [2004] to study the formal semantics of FODA feature diagrams and compare these

semantics with the formal semantics of successive feature modelling techniques extending

FODA. The problem of the different notations for feature models was raised, the aim of the

study was to study the expressive power of these different feature modelling techniques. The

authors list the different notations that exist in the feature modelling domain and point out that

they add no expressiveness to the semantics introduced by FODA. The paper also identified

that the lack of common semantics makes transforming feature models represented by one

technique into another difficult (i.e. manual rather than automated). The authors extend their

study [Schobbens et al., 2007] to define in formal semantics, the FODA notation and give a

comparison of the semantics of FODA with other feature modelling techniques. They define

the so-called general semantics of feature models, which is the common semantics in all feature

Chapter 3: Related Work

36

modelling languages. They denote additional semantics defined by different languages as

syntactic sugar.

Wang et al. [2005] adopt a semantic web approach to represent feature models. An

OWL (Web Ontology Language [Patel-Schneider and Horrocks, 2004]) based approach was

applied to represent feature models having the semantics of FODA. OWL DL was used to

represent features, their relations, and dependencies. Individual features were represented as

OWL classes. OWL constraints were used to model feature relations and feature dependencies

defined by the feature model. With this setting, the feature model semantics represented in

OWL was inspected for its consistency
15

, therefore the approach allows both representing and

verifying feature models. Given a certain feature composition, the approach can detect whether

it is valid or not; if it is valid that means that its ontology representation is consistent, if it is not

valid that means that its ontology representation is inconsistent. Furthermore, it can also present

the OWL DL axioms that cause the invalidity of the model; these axioms represent the

modelling concepts of the underlying feature model. Because features are modelled as first

class citizens, these axioms are the axioms that lead the ontology into an inconsistent state. The

authors do not provide a representation of feature models in general but rather they apply a

transformation to ontology for each individual feature model representing a certain case. The

authors used the Racer reasoner [Haarslev and Möller, 2003] to check the consistency of the

ontology and thus of the feature model which it represents.

Fan and Zhang [2006] propose a Description Logic (DL) representation of feature

models. The authors propose a translation of feature model semantics to DL axioms that map

the semantics provided by the feature model. A knowledge base that denotes the corresponding

feature model is created. Therefore, the consistency reasoning on the feature model turns into

the consistency reasoning on the corresponding DL knowledge base. Every node (i.e. feature)

in the feature model is translated to a DL concept C, every edge (i.e. relation) in the feature

model is translated to a DL role R. The feature model edge decorations (i.e. node types and

group relations) are mapped to DL terminological axioms (i.e. DL OR, AND, NOT). DL

cardinality constraints are used to map feature model cardinality constraints. The corresponding

DL model is then checked for consistency via the Racer reasoner [Haarslev and Möller, 2003].

Peng et al. [2006] provide an OWL ontology for feature modelling. The ontology

provides aid in application oriented tailoring. The ontology classifies features based on several

categories depending on the underlying business model (e.g., action, facet, and term). The basis

is action, which represents the business operation. In order to provide more business details for

actions, the concept of facet was introduced. Facet is defined as dimension of precise

description for Action. An action can have multiple facets and the facets can be inherited along

with generalization relations between actions. Dependencies between features are identified

based on their action requirements. The following dependencies were introduced: Use, Decide

and ConfigDepend. Use denotes the dependency on other features for its correct functioning or

implementation. Decide indicates that execution result of an action can determine which variant

of a variable action will be bound for its parent action. ConfigDepend represents configuration

constraints, which are static dependencies on binding states of variable features. Decisions

about feature binding times and constraints regarding binding are made part of the ontology.

Abo Zaid et al. [2009] presented a framework for representing, integrating and

validating feature models by using OWL and SWRL. The presented framework consists of an

ontology that formally provides a specification for feature models. The mapping from feature

models to ontology was defined by considering the meta model of feature models as first class

15

 The authors define “consistency” in the context of their work as the OWL DL ontology consistency,

i.e. all the axioms in the ontology meet the constraints that make the ontology consistent.

Chapter 3: Related Work

37

citizens of the model. The Ontology defined the concepts that make up the feature model and

the actual feature model representing a certain problem adhered to these concepts. The feature

model meta model captured by the ontology was defined based on a large category of the

semantics in existing feature modelling techniques. The authors defined a set of feature-based

integration semantics to enable the integration of distributed feature models. In addition, the

authors provide means to integrate segmented feature models and provide a rule based model

consistency check and conflict detection. SWRL rules were used to implement the rules

checking the consistency of the feature model. A Description Logic reasoner was used to

evaluate the rules and infer extra interesting information regarding the variability of the

software. Furthermore, the ontology contained rules that can extract variation points and

variants in order to allow users to quickly find relevant variability opportunities.

All these works emphasis the need for the formal representation and analysis of feature

models. In this thesis we have also realized this need and therefore provided a formal

representation for the Feature Assembly Modelling technique presented in this thesis (chapter

6). We have also combined this with defining the FAM Ontology which provides knowledge

representation semantics based on OWL for representing the feature Assembly Models (chapter

10) and capturing errors which they may hold.

3.2 Feature Models for Configuration

In this kind of work the emphasis is on finding possible configurations i.e. feasible

products that could be derived from the feature model. Feasible products actually represent

feasible solutions for the constraints represented by the feature model. From that perspective a

feature model is erroneous if no solution is found or if it contains one or more dead features.

Dead features represent features that are not present in any of the feasible solutions of the

feature model. These techniques do not take into account the fact that a contradiction in the

model (due to bad design specifications) may be blocking feasible or expected feature

combinations. Unlike the works presented in the previous section in which the consistency of

the feature model was investigated, in these works, a feature model is considered
16

 consistent if

it has feasible solutions, and contains no dead features (i.e. features that are never encountered

in a valid solution). Some techniques also take into account detection of false optional features

(i.e. features that are defined as optional but occur in every valid solution).

Batory [2005] used iterative tree grammar and propositional formulas to represent

feature models. A logic-based Truth Maintenance System (LTMS) [Forbus and De Kleer,

1993] and Boolean Satisfiability Problem Solver (SAT solver [Eén and Sörensson, 2003]) are

used to propagate constraints and find all feasible solutions. The feature model is transformed

into a set of propositional formulas which are fed to the LTMS solver. The LTMS solver finds

the set of solutions that satisfy the given constraints. The LTMS solver provides possible

configuration, and it determines also if a certain configuration defined by the user is feasible or

not.

16

 We consider this a necessary but insufficient condition for the consistency of a feature model. As

shown with the car example presented in section 2.2 the logical correctness of the feature model is also

an important and often neglected issue. This correctness is achieved when the different stakeholders

involved in the modelling of the domain have a thorough understanding of the features and how they

influence each other. Furthermore, this understanding should be explicitly and rigorously modelled and

made available to all stakeholders involved at later phases of the SPL domain engineering and

application engineering phases.

Chapter 3: Related Work

38

In order to find the set of feasible configurations, Benavides et al. [2005] transformed a

feature model into a Constraint Satisfaction Problem, in which features represent the variables

and the feature dependencies represent the constraints. Features are associated with values of

{true, false}, which means that the feature exists in the final product configuration (i.e. true) or

it will be omitted (i.e. false). A constraint solver is used to determine the feasible configurations

of the feature model, which is the solution that satisfies all the constraints. Typically many

solutions should exist. A fitness function is used to bias the solver to select solutions that

contain some desired features. The selection of the fitness function is dependent on the

application.

Janota and Kiniry [2007] use Higher Order Logic (HOL) [Shapiro, 2001] to formulate

feature models. The authors defined a generic feature model meta-model that integrates

properties found in several feature modelling approaches from the literature. Again, a mapping

is defined to transform the information contained in a feature diagram into HOL formulas. A

feature is considered as a record with a set of attributes, where each attribute models a property

of that particular feature. Utilizing this definition, they define a feature configuration as the set

of features that are selected and the values of their attributes. Subsequently, a feature model is

defined as a function that determines the set of valid configurations. The resulted HOL

formulas are feed into a Prototype Verification System (PVS), a HOL solver, which is used to

find feasible configurations.

Asikainen et al. [2007] define a domain ontology for modelling variability in software

product families (as mentioned in section 2.4.3.2). The ontology was implemented using the

Kumbang language, which is a combination of UML OCL constraints and natural language. To

find feasible configurations the knowledge in the ontology is translated to Weight Constraint

Rule language (WCRL), and Smodels
17

 [Niemelä and Simons, 1997] is used to find the

possible configurations.

In the last years many authors, followed this path of using feature models for deriving

configurations, a literature review of those techniques can be found in [Benavides et al., 2010].

As already mentioned, in this thesis we focus on the creation and representation of feature

models as part of the domain analysis, we do not consider configuration of feature models. We

have added an overview of work in the context of using feature models for configuration of

SPL for the sake of completeness.

3.3 Modelling with Separation of Concerns

The “divide and conquer”
18

 approach is known to reduce the complexity of a big

problem to smaller problems that can easily be solved separately. The same concept is also

applicable when modelling large systems. It is a well-known fact that focusing on one aspect at

a time allows for a better in depth understanding of that aspect. To help understand and reduce

the complexity of software modelling and development the term separation of concerns was

defined to allow tackling one aspect at a time. Separation of concerns is defined as “the ability

to identify, encapsulate and manipulate only those parts of software that are relevant to a

particular concept, goal, or purpose” [Ossher & Tarr, 2001].

17

 Stable models, http://www.tcs.hut.fi/Software/smodels/
18

 A divide and conquer algorithm works by recursively breaking down a problem into two or more sub-

problems of the same (or related) type, until these become simple enough to be solved directly. The

solutions to the sub-problems are then combined to give a solution to the original problem [Wikipedia,

http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm]

Chapter 3: Related Work

39

To maintain separation of concerns in the software development process the term

perspective or viewpoint was introduced by Finkelstein et al. [1992] to identify a mental view

or outlook of a portion of the system in software architecture modelling. Finkelstein et al.

[1992] defined a viewpoint as a locally managed object or agent which encapsulates partial

knowledge about the system and its domain and which therefore contains partial knowledge of

the design process. In subsequent works, the idea of modelling the software architecture using

perspectives was further investigated to show how adopting perspectives helps in efficient

modelling of the software system. The works by Graham [1996], Woods [2004] and Nuseibeh

et al. [2003] are samples of such work where abstraction via viewpoints was introduced for

software architecture modelling.

Due to the possible large size of software product lines in addition to the complexity

associated with adding variability, recently some attempts to apply the separation of concerns

principle for variability modelling have been carried out to improve the stakeholder

understanding of large and complex systems. Mannion et al. [2009] proposed a multi

perspective approach for modelling variability, in which perspectives were defined based on

stakeholders’ concerns. Each stakeholder has his/her own point of view and different usage for

the products in mind; this reflects how he/she defines the expected/required variability.

Therefore, using this approach, stakeholders are able to maintain their own partial models about

the domain and its variability. There are no guidelines to how the viewpoints are defined, it is

totally problem dependent and is driven by the involved stakeholders. The authors define a

viewpoint as a subset of a master feature model containing only the features (and their

interrelations) that a relevant for a given point of view. Examples of such viewpoints are

market-driven viewpoints, and technology-based viewpoints. Furthermore, the authors propose

a set of rules for conflict detection and conflict resolving between the different features

belonging to more than one viewpoint with different constraints and relations constraining their

selection in the final configuration. The aim is to support the configuration process when

stakeholders have conflicting goals. Our work also uses the term “perspective” but its purpose

is different and we also provide guidelines on how to use the perspectives.

Tun et al. [2009] use the separation of concerns principle to relate requirements to

feature configurations, for this purpose three different types of feature models were created

Requirement feature model, Problem World feature model, and Specification feature model.

Requirement FM (RFM) describes different requirements that can be satisfied by the product

line, this model is “high-level”. The Problem World feature model (WFM) describes the

features in the system context by showing different physical settings in which the software

system might be deployed. The Specification feature model (SFM) describes the feature of the

software, reflecting software engineers’ view of the system.

A different approach for separation of concerns was adopted by Dhungana et al.

[2010], they propose that the modelling space should be structured, so that large product lines

can be managed more easily. The approach depends on defining model fragments that model

the subsystems defined during the model structuring phase. A model fragment is a partial

model with defined dependencies to other model fragments. The fragments need to be merged

to have a global overview of the complete model, while doing so the consistency of the overall

model is also checked. It is up to the modeller to define the appropriate fragments.

 Rosenmüller et al. [2011] apply the Multi-Dimensional Separation of Concerns

principle [Tarr et al., 1999] to variability modelling, they define the multiple dimensions

variability modelling technique which aims to provide a way to model different variability

dimensions separately and to integrate variability modelling with software product line

configuration. The authors define a variability dimension as a kind of variability that is

important for a stakeholder. They name the following examples of variability dimensions: the

execution environment of a program (e.g., the operating system, the hardware), the context at

Chapter 3: Related Work

40

runtime (e.g., time, space, the user, etc.), non-functional properties (e.g., security, quality of

service), and implementation variability. Because their objective is to use feature models for the

sake of configuration the authors propose a textual variability modelling language for

variability modelling in which the variability dimensions are described in separate variability

models.

Hubaux et al. [2011] use the separation of concerns principle to provide different

stakeholder views or perspective on large feature models for the sake of facilitating the

configuration process. They define a view as a streamlined representation of a feature model

that has been tailored for a specific stakeholder, task, or, to generalize, a combination of such

elements. Therefore they are defined based on the different stakeholder interests and goals. The

objective of the defined views is to facilitate configuration by only focusing on those parts of

the feature model that are relevant for a given concern.

Schroeter et al. [2012] use user specific concerns to create different perspectives to

enable tailored stakeholders views on large feature models. The objective of their work is to

simplify the configuration process by providing stakeholders with views on the feature models

that relate to their concerns. They distinguish between a perspective and a viewpoint; they

define a perspective on a domain feature model as a virtual view resulting from the aggregation

of multiple views, where each view is dedicated to a stakeholder’s concern. While a viewpoint

is defined as a collection of related group views being permitted to form a valid perspective

accessible to stakeholders. A view model is created to hierarchically relate the different

viewpoints to each other. The modelling and derivation of perspectives is a conservative

extension to feature models. Therefore, the view model is separate from the original domain

feature model and a multi-perspective model is used to integrate both. Features are assigned to

groups of the view model and viewpoints are identified to create perspectives in the application

engineering process. In the configuration phase stakeholders choose a viewpoint by selecting

groups from the view model reflecting their concerns.

In the previously mentioned feature modelling with separation of concerns techniques,

the emphasis is on handling the complexity of deriving products based on large feature models

by separating them into smaller feature models using the separation of concerns principle.

There are no concrete guidelines on how features are defined in the different perspectives,

viewpoints or views; it is totally up to the involved stakeholders as the objective is to aid these

different stakeholders involved in understanding large and complex feature models for the sake

of making correct configurations. In the Feature Assembly Modelling approach, we adopt

separation of concerns to support stakeholders during the modelling process in order to reduce

and understand the complexity. We have adopted the principle of separation of concerns by

using the concept of viewpoints or perspectives as a guide for identifying the features in

addition to their variability. We propose a set of possible perspectives, and provide guidelines

on how to identify features belonging to this perspective. We also provide guidelines on how a

new perspective may be introduced.

3.4 Model Integration and Consistency Checking

This kind of work stems from the need to partition large conceptual models. As feature

models are a particular kind of conceptual model we first start with works on model integration

in conceptual models. Then we provide some specific examples of how these techniques were

applied to feature models. Once the models have been partitioned into different chunks for ease

of modelling, there is a need to combine the chunked models in order to have a complete

picture of the overall model. Furthermore, the integration process should also hold a check for

the consistency of the integrated model. We start by listing some generic work on model

Chapter 3: Related Work

41

integration and next we give current work that applies similar techniques for integration of

feature models.

Kolovos et al. [2006] define a model merging language named Epsilon Merging

Language (EML), which is a rule-based language for merging models of diverse meta-models

and technologies. First a check for matching is performed with a set of match-rules. Each

match-rule can compare pairs of instances of two specific metaclasses and decide if they match

and conform to each other or not. EML allows defining a mapping between the elements of the

two models to be merged via two different types of rules: merge-rules and transform-rules.

Merge rules define the elements to be merged from the source model to the target model, while

transformation rules defines the elements that can be transformed from the source model to

meet the meta model of the target model. The authors did not provide means to check the

consistency of the merged model.

Sabetzadeh et al. [2007] introduce the problem of consistency checking in typed graph

based models. They define a set of RML (Relational Manipulation Language) rules which

validate the consistency of the resulted merged model. Furthermore, the concept of global

model merging was introduced to indicate the merging of all the existing heterogeneous models

and then performing the consistency check on the global merged model. The merging is done

via a merging operator, which was defined to bring together individual models by equating

their corresponding elements. By keeping proper traceability information, consistency

diagnostics obtained over the merge are projected back to the original models and their

relationships.

Segura et al. [2007] propose a model merging approach for merging segmented feature

models using graph transformations. The authors propose that the segmentation of feature

model could be in terms of both time and space. They define the process of merging feature

models as an operation that takes as input a set of feature models and returns a new feature

model representing, as a minimum, the same set of products than the input feature model. The

proposed technique allows for automating the merging of feature models based on a set of

merging rules. The authors define a catalogue of visual rules to describe the possible different

merging conditions and show with each condition the merging result.

Acher et al. [2009] define operators for merging feature models, two composition

operators insert and merge are defined. Insert is used to insert features from one feature model

into the other. This is done by introducing newly created elements into any base element or

inserting elements from the aspect model into the base model. The proposed insert operator

supports different ways of inserting features from a crosscutting feature model into a base

feature model. Merge is used to combine matching features in two feature models in order to

obtain a feature model that combines the two feature models. As a result of the merge some

features may be renamed or deleted to achieve the consistency of the resulted feature model.

Acher et al. [2012] extend their work by proposing creating fragments of feature models to

overcome the large size and complexity of the one feature model paradigm, they propose using

their merging operators to merge these many feature models.

In the work presented in this thesis, we use a technique similar to the merging

operator(s) defined by Acher et al. [2009] to link related feature together based on feature

dependencies.

3.5 Multiple Product Lines

Holl et al. [2012] define a Multiple Product Line (MPL) as a set of several self-

contained but still interdependent product lines that together represent a large-scale or ultra-

Chapter 3: Related Work

42

large-scale system. The different product lines in an MPL can exist independently but typically

use shared resources to meet the overall system requirements. Multiple product lines are

referred to in the software product line literature using many terms of which are ultra-large-

scale systems [Northrop et al., 2006], software ecosystems [Bosch, 2009], compositional

product lines [Bosch, 2010], or product populations [van Ommering, 2000]. Several scenarios

exist where there may be a need for multiple product lines. The first scenario is that starting

with one product line diversity increases among the features that it becomes more flexible to

consider several product lines of less diversity and size. According to Van Ommering [2002] in

real case situations the scope and diversity of the product line increases leading it to be split to

several product lines instead of one in order to better manage its increasing size and diversity.

The speed on which a product line evolves to a multiple product line depends on customer

requirements, the market needs, technology requirements (and also offers) and innovation

support. The second scenario is that the product line is too large because it models a complex

and large system in which each part on its own may also be considered a product line.

Describing this scenario Northrop et al. [2006] indicate that in very large systems both

variability and complexity can be better managed by splitting these systems to multiple product

lines. The third scenario is actually a combination of the first two scenarios and motivated by

the need for openness in software development (e.g. for outsourcing and using third party

components). Describing this scenario, Bosch [2009] indicates that as the diversity of the

product line increase and there is a need for openness to third party development then software

ecosystems is the next logical step for a company that has a successful platform and intra-

organizational software product line.

Many works have investigated the support for modelling such product lines for

example the work by van Ommering [2002] investigates the use of component based

architecture models for maintaining reuse of components (which are also features) between the

different product lines. Bühne et al. [2005] propose a meta model for structuring variability

information in the requirements artefacts across product lines. The presented meta model is

based on the OVM-notation (Orthogonal Variability Modelling [Pohl et al., 2005]). Hartmann

and Trew [2008] support the modelling of Software Supply Chains which represent a Multiple

Product Line. The multiple product line is modelled combining a Context Variability Model

(contains classifiers of context) with the conventional feature model to create a new model,

which they call the Multiple Product Line Feature Model. Features are related to context

classifiers through feature dependencies. According to Reiser and Weber [2006] multiple

product lines is a typical case in the automotive industry where several product lines exist

overtime. The new product lines are initially taken from existing product line models amending

them to new requirements. The authors introduce the notion of reference feature models and

allow traditional feature models to be enhanced with the option of having such a reference

feature model. Thus are called the referring feature model. The reference model serves as a

template and guideline for the referring model by defining default features together with their

default properties and by defining which deviations from these defaults are allowed. A

hierarchical organization of product sub-lines is composed to reflect how the products relate to

each other. Based on this hierarchy a multi-level feature tree consisting of a tree of feature

model in which the parent model serves as a reference feature model for its children. In recent

years of research on the topic more attention was given to the architecture support and

configuration of multiple product lines, interested readers may refer to the recent survey of Holl

et al. [2012] on capabilities supporting multi product lines.

In this thesis, we also take into consideration that multiple product lines can spring

from the first initial product line, in which some features may have different variability

specifications (e.g. based on market, legal or technology requirements). However, instead of

expanding the concept of software product line to capture multiple product lines, we allow to

create different product lines (as well as different products) from existing features by

Chapter 3: Related Work

43

supporting reuse of features as early as the domain analysis modelling phase. We tackle the

issue of reuse of features at the feature modelling level in chapter 9.

3.6 Variability Modelling and Databases

Development of efficient data intensive software product lines requires an alignment

between the features of an individual product and the data (governed by a data schema) on

which these features operate. Different features may require different parts of the data.

Tailoring the database to the specific needs of a database actor is a well-known issue in

database design. Often many views are created to suit the specific needs of different users or

user groups (i.e. actors). For example, Nyström et al. [2004] proposed schema tailoring to meet

the needs of different actors accessing different portions of data, in different usage scenarios.

Data views were tailored for different actors in different contexts. It amounts to cutting out the

appropriate data portion that fits each possible actor-context.

The issue of matching the database with each member of the product line was first

raised in embedded systems [Tesanovic et al., 2004], [Rosenmüller et al., 2008] and

[Rosenmüller et al., 2009], where the hardware is diverse and only limited resources exist.

Therefore it is very important that the application and its accompanying database, as well as the

database management system are suitably tailored to meet the different requirements.

Tesanovic et al. [2004] perform the tailoring process at runtime to provide a configurable real-

time database platform (for both data and DBMS). Rosenmüller et al. [2008] adopt a product

line approach to develop both the application and the suitable database management system

(and also data) for each product. In that case, it was crucial that with each product of the

product line only the essential data management requirements and essential data existed. The

focus was given to the variability of the DBMS features. The authors did not mention how the

database entities were affected by this variability in DBMS features. Rosenmüller et al. [2009]

extend their work and use a feature oriented programming approach for tailoring a DBMS for

embedded systems, in which a feature model describing the DBMS features and their

variability. Feature oriented programming was used to create a common architecture and code

base that allowed to configure different configurations of the DBMS (the approach was applied

to Berkeley DB).

Bartholdt et al. [2009] propose an approach for Data Model Variability (ADMV) in

which a feature model is created to model the variability and commonality of the software

product line, a data model (represented in UML) is also independently created to represent the

data entities of the software product line. The ADMV addresses three types of variability:

positive - adding new fields, data or relations to the core model; negative - eliminating fields,

data, or relations from the core model; and structural - varying the type, cardinality, or naming

of elements. The stereotype <<Variation>> is used to define the variable types in the data

model. The modelling of variability and data in a central model makes the effects of the

variability more traceable. This approach is close to our approach, yet they provide no

guidelines for how the variability in the data model was defined (like we do) and whether its

relation to system features were considered early in this process or not.

Siegmund et al. [2009] propose to tailor database schemas according to user

requirements. Two methods were proposed, physically decomposed schemas (i.e. physical

views) and virtual decomposed schemas (i.e. virtual views) for representing variability in the

application and matching this variability with variability in the corresponding database. Once a

product is configured (i.e. the features of the product are identified) the schema is tailored to

meet the needs of the product features. The proposed technique decomposes an existing

database schema in terms of features. It allows tracing of the schema elements to the program

Chapter 3: Related Work

44

features at the code level using a technique similar to the #ifdef statements of the C

preprocessor. The presented approach focuses on the tailoring process of the schema, the

description of how the variability in application features is related to data entities is not

detailed.

In this thesis we present an approach to support modelling the variability and

commonality of the data according to the variability and commonality of the application.

Variability of the application is analysed in order to derive a variable data model maintaining

traceability links between the variable features of the application and their corresponding

variable entities in the database. This approach is presented in chapter 7.

3.7 Feature Model Visualization

Adopting visualisation techniques in software product line engineering can help

stakeholders in supporting essential work tasks and in enhancing their understanding of large

and complex product lines [Nestor et al., 2008]. The purpose of the visualization may vary

from providing cognitive support for understanding the complexity in the product line to aiding

the configuration process.

The V-Visualize tool [Sellier and Mannion, 2007] uses force directed layouts to

represent variability represented in decision models and inter-dependency models. Decisions

are represented as nodes and dependencies are represented as edges in the proposed

visualization. Nestor et al et al. [2008] propose a set of guidelines for providing visualization

support for managing variability. Based on these guidelines they propose the Visual and

Interactive Tool for Feature Configuration utilizing a simple non-radial tree layout with support

for colour encoding of information and details on demand support [Cawley et al., 2008].

FeatureMapper [Heidenreich et al., 2008] provides tree-based visualization support for

developers in understanding the mapping between features from a feature model and their

realisation in solution models. The tool provides four views for this, the Realisation View, the

Variant View, the Context View, and the Property-Changes View. The objective of the tool is

to support users in configuring large and complex product lines. Trinidad et al. [2008] propose

Feature Cone Trees (FCT) visualization of feature diagrams using cone trees as an alternative

to represent large hierarchies in the three dimensional space. Interaction with feature cone tree

is done by rotating all the sub-cones whenever a node is selected. Cawley et al. [2009] propose a

3D visualization for variability models, the variability models considered are decision models,

feature models, and component models. The proposed visualization consists of three graph

axes; the decision model is mapped to the Y-axis, the feature model to the X-axis and the

component model to the Z-axis. The mapping is a sequential listing of the model elements

along an axis.

In this thesis, we use a force directed graph for visualizing the Feature Assembly

models, users can browse the visualized models on demand. For the ease of browsing colour

schemes, which can be adjusted by the users, are supported. As not all the information is

important to all users, users are allowed to indicate which information they wish to see on the

visualization. Query support is also provided.

3.8 Summary

In this chapter we have reviewed relevant work related to the topics of this thesis. We

have started with the works concerned with representing and analysing feature models; feature

models represented with knowledge representation techniques, and automatically or semi

Chapter 3: Related Work

45

automatically analysed feature models. Although out of the scope, but for the sake of

completeness, we listed some works on using feature models for configuration management in

which stakeholders are concerned with finding the possible products derivable from the feature

model(s). Next, we mentioned some of the early works on modelling with separation of

concerns in software engineering in general. We also considered the works that investigate its

application to feature models. Next, we mentioned works related to model integration and

consistency checking, which are techniques to merge conceptual models and check the

consistency of the merged conceptual model. We also have considered the work done on

multiple software product lines. We described the efforts done on linking the variability in the

application to variability in data and data schema. And finally, we concluded this chapter by

looking to the efforts on visualization of feature models.

46

Chapter 4: Background

47

Chapter 4

Background

In this chapter
19

 we give some background information related to the domain of

knowledge management

 as we adopt a knowledge management approach for representing and

managing the information about the commonality and variability of the features representing a

specific software product line. Knowledge management and knowledge representation is a

broad discipline; in this chapter we present only the parts that are relevant to the work

presented in this thesis.

Knowledge is defined by philosophers as a meaningful resource that makes us

knowledgeable about the world. Theories of knowledge define what is about the world, how is

it encoded, and in what way we reason about the world [Lim et al., 2011]. In the context of

computers and information systems the term Knowledge is used to define meaningful

information. Knowledge is defined by Schreiber et al. [2000] in the context of information

systems as “the whole body of data and information that people bring to bear to practical use in

action, in order to carry out tasks and create new information. Knowledge adds two distinct

aspects: first, a sense of purpose, and second a generative capability”. An important aspect

about knowledge is that it cannot be looked at in isolation. Knowledge is only important within

a certain context. What could be important knowledge in one situation could be useless in

another. This is why knowledge is said to have a sense of purpose. Understanding the purpose

of the knowledge means defining when it will be used and by whom. Different people may

have different perception on the same piece of knowledge. Additionally, different people may

require different views of knowledge as well as different levels of detail. Too little knowledge

for one could be too much for another. Therefore, for an efficient understanding and utilization

of knowledge, knowledge management techniques should be adopted. Knowledge management

is the discipline under which information is turned into actionable knowledge and made

available effortlessly in a usable form for people who can apply it [Kimiz, 2005]. Knowledge

management is a process that consolidates three essential phases [Schreiber et al., 2000]

[Preece et al., 2001]:

6. Knowledge Acquisition: This is the process of finding out what knowledge needs to be

managed. The knowledge that should be represented and manipulated by the intended

knowledge management system should be captured; its scope should be defined.

Knowledge acquisition includes an understanding of the problem domain(s) to which the

knowledge belongs. At this point, a thorough understanding of all the essential information

within the problem domain should be achieved. Additionally, an understanding of which

information is required by whom (this could be a person or another system), how it is

sought (i.e. what type of queries that the user is likely to issue to the system), and at which

level of details.

7. Knowledge Storage: Once captured, knowledge should be well defined and represented. A

model is created to represent the knowledge captured in phase 1, often referred to as a

19

 Readers familiar with knowledge management can skip the chapter.

Chapter 4: Background

48

conceptual model. A conceptual model is an abstraction of some part of reality; it is

conceptual and independent from the actual form of implementation. Furthermore, a

conceptual model provides a formal description of the knowledge within the problem

domain. While doing so certain decisions should be made to provide the right scope of the

conceptual model and what concepts within the domain are of interest. This process is

based on the knowledge captured during the knowledge acquisition phase. Conceptual

models provide a medium for explicitly and formally representing knowledge. Yet they

remain at a conceptual level and represent a starting point for understanding, abstracting

from any implementation. In order to obtain a knowledge model that provides solutions that

answer the needs of the users, a processable knowledge model is required. To obtain a

processable knowledge model the conceptual model is represented by means of a

knowledge representation technique to obtain a physical model represented in a chosen

knowledge representation structure. The resulted processable knowledge model is a formal

unambiguous representation of the conceptual model that can be further stored and

manipulated. Because this phase is the most important phase for the success of any

knowledge management system, it will be discussed in details in sections 4.1 where we

discuss conceptual modelling and in section 4.2 where we discuss knowledge

representation techniques.

8. Knowledge Manipulation: Once a processable knowledge model is built, the knowledge

management system is ready to use. Users can use the system to retrieve stored information

or deduce new information from already existing information (through inference

techniques, as will be discussed later). Additionally, users can query the system for parts of

some specific knowledge (e.g., via queries).

4.1 Conceptual Modelling

Knowledge modelling is the act of building abstract knowledge models to represent

already existing real world systems in a comprehensible and formal manner. At an early stage

of knowledge modelling, knowledge models are built independent from any implementation

issue. Therefore this stage is often referred to as conceptual modelling. The knowledge model

is then known as the conceptual model. Conceptual modelling is one of the key topics in

information systems (IS) [Wand and Weber. 2002]. Conceptual modelling is also considered a

crucial activity in software engineering [Dieste et al., 2002]. Conceptual models are

abstractions describing the world from a conceptual point of view, while doing so they hide

certain details while illuminate others. Conceptual models assist in understanding the world to

be modelled in three essential ways [Allemang and Hendler, 2008]:

 Conceptual models help people communicate. A conceptual model describes the

situation in a particular way that other people can understand.

 Conceptual models explain and make predictions. A conceptual model relates

primitive phenomena to one another and to more complex phenomena, providing

explanations and predictions about the world.

 Conceptual models mediate among multiple viewpoints. No two people agree

completely on what they want to know about a phenomenon; conceptual models

represent their commonalities while allowing them to explore their differences.

Conceptual models represent information using semantic terms, such as entity,

relationship, concept, event, goal, etc., and semantic relationships, such as roles, and

associations [Mylopoulos, 2001]. Concepts may be organized into concept hierarchies by

means of their generalization-specification relationships. Or they could be organized in terms of

part-of relationships (i.e. aggregation). Furthermore, a conceptual model should also define

Chapter 4: Background

49

how concepts relate to each other in terms of their intersection and/or union relationships.

Moreover, a concept may be disjoint with one or more concepts to indicate that it cannot

intersect with it (i.e. to explicitly mention in the model that the two concepts are totally

different).

A conceptual model should represent the knowledge within the domain it represents

using the terminology used in that domain. Domain terminology is referred to as domain

vocabulary. It is important to bear in mind that no knowledge model is capable of providing an

exact and complete representation of a specific domain, nor should it. This is because

knowledge is a relative thing, i.e. not all the knowledge in the domain is significant for a certain

purpose, rather only the knowledge relevant for the problem being modelled from a specific

context (the context that the knowledge model is created for). For example when modelling a

car many concepts can be defined. Adopting a component wise context, broad concepts like:

Engine, Wheals, Transmission, and Chassis can be defined, while adopting a visual

characteristic context, leads to defining concepts such as: Colour, Wheals Type, Model Number,

User Age Category, and Number of Seats. For a system that mechanically simulates a car the

first set of characteristics are far more important than the second set. While for a car selling

customization system, the second set is more important (the first set is fixed for a specific car).

In the case of building a car buying recommender system both sets of concepts become

important.

Therefore, it is important that any conceptual modelling process should start with

defining the purpose for the modelling. This is done by answering the question “what is the

model intended for?” Answering this question should help in anticipating what domain

concepts should be relevant and why. Next, all the relevant domain concepts found in the real

world knowledge model should be mapped to their representative concepts (and sometimes also

attributes) in the corresponding knowledge model. Furthermore, the conceptual model should

also capture rules or restrictions governing the definition of the concepts of the domain. This

kind of knowledge is known as tacit knowledge [Schreiber et al., 2000]. It is often not found

explicit in the domain but comes from understanding the domain and how the different

activities are done within that domain. This intrinsic knowledge and hidden rules that govern

how the different domain concepts interact should be made explicit and should become part of

the conceptual model.

 Figure 3.1 shows the

process of conceptualizing

knowledge from real world to a

knowledge model representing

the problem domain. Figure 3.1

also shows that the conceptual

model serves as a first prototype

for the actual processable

knowledge model [Wielinga et

al., 1992].

For the sake of formally

representing and communicating

knowledge, different conceptual

modelling languages have been

proposed, each providing a meta

model for representing domain

concepts. Conceptual modelling

languages are mostly visual

languages to increase the cognitive ability of domain experts and to facilitate communication

Figure 4.1: Conceptual Modelling Process [modified after Kotiadis

& Robinson [2008]]

Chapter 4: Background

50

and cooperation. We list here some of the most common conceptual modelling languages and a

brief description of their meta model concepts, namely: ORM [Halpin and Morgan, 2008], ER

[Chen, 1976] and UML [OMG].

 Object Role Modelling (ORM): ORM is a fact oriented modelling technique; it

conceptualizes the domain in terms of objects and their roles. Objects are the concepts

of the domain, and roles identify the roles objects can play in relationships between

these concepts. ORM also provides specialization relationships by means of subtypes

and provides a rich set of constraints to express the rules that apply in the domain.

Furthermore, ORM structures may be directly verbalized as sentences, it is based on

few orthogonal constructs, and it reveals semantic connections across domains.

 Entity Relationship Modelling (ER): ER describes the domain in terms of entities and

their relationships. Entities represent the domain concepts which could have

associations that link them together, these associations are the relationships.

Furthermore, entities are further associated with additional information which identify

properties of these entities, these are referred to as attributes. Together entities and

relationships provide a mapping of the domain concepts and how they are related

together. Attributes provide more details about these domain concepts.

 Unified Modelling Language (UML): UML on the other hand is an object oriented

modelling technique that was originally intended to model software, and also found its

way to data modelling (class diagrams). It models the world in terms of objects and

their relations namely associations and generalizations. UML’s class diagrams also

allow modelling attributes (properties) and operations (behaviours) of an object. Each

object has a type which is defined by means of a class. A class defines the properties

and behaviours of its objects and also its relationships.

 Each of these languages (ORM, EER, and UML) is based on a different theory of

representing knowledge, i.e. each has a different set of associated syntax (marks), semantics

(meaning) and pragmatics (use) [Halpin and Bloesch, 1999].

4.2 Knowledge Representation Techniques

As mentioned above, a conceptual model provides a concrete understanding of (a part

of) the real world, i.e. domain, abstracting from any implementation issue. Once a conceptual

model is created, this model should be used to obtain a processable model, which is referred to

as a knowledge model
20

 also called a computational model
21

. By a processable model we mean

one in which knowledge can be made available and accessible in a comprehensible manner for

both humans and machines (hence the name computational model). For example, it can be

queried to retrieve information, i.e. facts stored in the model. Furthermore, a knowledge model

should not only represent and store facts about the domain, but also provide the necessary

information to reason about these facts. Therefore, it is important to use unambiguous terms for

representing the domain concepts and how they are related, in order to allow useful inferences

to be made. Inference refers to the ability of deducing new knowledge from existing

knowledge. How new information should be deduced is a fundamental part of any knowledge

model. Without the model explicitly stating the situations that should trigger inferences and the

rules that the inferences should follow, no inferences can be made. This is actually an important

part of the model when modelling a system for problem solving.

20

 This is the typical naming used in Information Systems.
21

 This is the typical naming used in Artificial intelligence.

Chapter 4: Background

51

Failing to identify correctly relationships between the concepts within the model will

lead to a misinterpretation of the system. Likewise failing to identify correct rules that guide the

inference process will also yield in wrong inferences. The resemblance between the facts in the

model and these facts in the domain is referred to as the fidelity of the model [Davis et al.,

1993]. A correct model is one that achieves the highest possible fidelity, in both representing

the facts of the domain and the rules that govern how new facts can be deduced. This ensures

that the inferred information is always true.

According to Schreiber et al., [2000] a knowledge model should contain three groups

of knowledge, domain knowledge, inference knowledge and task knowledge. Domain

knowledge is the knowledge about the specific domain. It represents the domain concepts, their

attributes, and the relations (e.g., classification, aggregation, etc.) between these different

domain concepts. Domain knowledge should capture both explicit and tacit knowledge in the

domain. For example for specifying a car the concept wheel can be defined, which has an

attribute diameter and a constraint that a car has four identical wheels. Inference knowledge on

the other hand is the set of specifications by which new knowledge can be inferred from

existing one. Furthermore, inference knowledge identifies the knowledge roles of interaction

between the different (static) domain concepts. These roles act as functional transfers that show

knowledge which is related to some activity. For example within a car buying customization

system the inference has colour could be used to relate a certain car with a specific colour.

Additionally, inferences are also used to represent rules within the system; as an example a

customized car is a car that has a specific colour, specific seat number, a specific wheels type

and a valid model number. Task knowledge is the knowledge concerned with the goals of the

knowledge system, it tries to answer the question “for what was this knowledge model

developed?”. Task knowledge identifies a hierarchal decomposition of tasks that act as a

solution to realizing a certain task. In the work presented in this thesis we are only concerned

with domain knowledge, inference knowledge (as will be discussed in chapter 10).

Developing a knowledge model for a certain problem is not a straightforward task;

rather it is an iterative task that depends greatly on the purpose of the model. According to

Bylander et al. [1988] representing knowledge for the purpose of solving some problem is

strongly affected by the nature of the problem and the inference strategy to be applied to the

problem. Therefore, a variety of techniques have been presented to represent knowledge

models, referred to as knowledge representation techniques. Each one of these techniques has

its own semantic capabilities (i.e. expressive power) and inference capabilities. Based on one or

more of these techniques different languages have been defined to represent knowledge. Some

of the most common techniques are: logic-based knowledge representation, rule-based

knowledge, semantic networks, and ontology. We will discuss each in more details.

4.2.1 Logic Based Knowledge Representation

Logic based knowledge representation is probably the most common and widely

known technique to represent information since the development of knowledge representation

techniques in the early 1970’s. The popularity of logic is due to its capability of unambiguously

representing facts about the world. The most popular species of logic for knowledge

representation is First Order Logic (FOL); this is due to its high expressive power. The basic

elements of the representation are characterized as unary predicates, denoting sets of

individuals, and binary predicates, denoting relationships between individuals [Baader et al.,

2003]. For example, statement (4.1) below shows a first order logic statement stating that for

every variable y that is a Car, it is also a Vehicle. Statement (4.2) states that Car2 is a Car.

Reasoning in first order logic is mainly used to check consistency of the defined premises.

Chapter 4: Background

52

Furthermore, first order logic supports querying the existing knowledge, by identifying whether

a given premises is true or false. An important note about first order logic systems is that the

defined models may not be finite depending on the complexity of the defined premises. In this

case it is the modeller’s task to validate whether or not the defined system is finite.

)())((yVehicleyCary)1.4(

)2(CarCar)2.4(

Description Logics (DL) (a second order logic) was defined in the 1980’s. It gained

popularity as a knowledge representation technique due to being concept-based rather than

functional-based as in first order logic. In description logic, a distinction is made between

domain concepts and individuals that belong to the domain [Baader et al., 2003]. Domain

concepts are perceived as terminology within the description logic representation of the world;

it is referred to as the TBOX. The TBOX holds the declarations that describe the concepts of the

domain and defines how these concepts are structured in a concept hierarchy. It also describes

concept properties, which declare the relations between concepts. Knowledge concerning the

declaration of individuals in the domain is known as assertions and is referred to as the ABOX.

DL statement (4.3) below states that Car is subclass of Vehicle, i.e. all Cars are Vehicles. DL

statement (4.4) states that hasColour is a property of the Car concept; it identifies the colour of

a certain car. Statement (4.5) is an assertion that Car 1 has a Red colour. Statements (4.3) and

(4.4) are part of the TBOX while statement (4.5) is part of the ABOX. Knowledge represented in

terms of DL logic representation can be formally reasoned about; three forms of reasoning are

available, satisfiability, subsumption, and consistency check. If an expression is satisfiable it

means that it is consistent with the knowledge defined in the DL system. Subsumption means

identifying the hierarchical relation between the concepts. When reasoning for subsumption, a

concept hierarchy is defined for all concepts part of the knowledge model in order to relate

them to one another. Consistency check validates that there are no contradicting facts defined in

the knowledge model. Furthermore, a DL system can be queried for individuals that belong to a

certain concept or satisfy a certain premises.

VehicleCar)3.4(

CarhasColour.)4.4(

),1(RedCarhasColour)5.4(

Unfortunately, logic representation of knowledge is difficult to understand for non-

logicians. Despite their expressiveness in representing knowledge, their usability is a major

drawback.

4.2.2 Semantic Networks

Semantic networks are flexible and easy to use structures for representing knowledge.

They can easily be created and read by non-logicians. A semantic network is a directed graph

notation for representing knowledge in patterns of interconnected nodes and arcs [Kendal, and

Creen, 2007]. The nodes represent individuals (i.e. knowledge objects or instances) and the arcs

represent how these individuals are related to each other. An arc holds a name that represents

the relationship (also role) which it holds with the individual it is connected to. Sowa [1987]

identified six different types of semantic networks, which differ in their expressivity and

formality of their representation.

Chapter 4: Background

53

 Figure 3.2 shows a sample semantic network

that represents the following information: Car is a

Vehicle, Car 1 is a Car, Car 1 hasColour Red, and Red

is a Colour.

Although semantic networks are very powerful

in expressing knowledge they have two major

drawbacks. Firstly, their flexibility in representing

knowledge in various ways and using various

vocabularies makes it difficult to represent exceptional

cases. Secondly, they scale badly. Despite their

flexibility and ease in representing knowledge, when

the represented knowledge is large the semantic

network grows in size and becomes difficult to read

and to analyse.

4.2.3 Ontologies

“Ontology” is a term coming from philosophy that means the study of being or

existence. It refers to a system of categories to describe the existence of the real word, or the

classification of being [Gruber, 2008]. The term ontology found its way to computer science

due to its ability to describe the world using formal semantics. Ontologies were first used in

Artificial Intelligence as a way of specifying content-specific agreements for the sharing and

reuse of knowledge among software agents. Ontologies then found their way to other

disciplines of computer science as a way to formally conceptualize knowledge within a certain

domain allowing for a common understanding of that knowledge. By providing a formal and

common understandable representation of knowledge in a certain domain, ontologies allow for

knowledge sharing and knowledge reuse.

Gruber [1993] defines an ontology as an explicit specification of a conceptualization. A

conceptualization is an abstract, simplified view of the world that we wish to represent for

some purpose, i.e. a conceptualization is the universe of discourse or domain of interest.

Therefore, a conceptualization refers to the formal representation of the concepts and

relationships between these concepts with respect to a specific domain of interest. An

agreement on a certain specification of a certain domain indicates how all agents committed to

use this ontology should interpret the concepts of the domain. This allows these agents to have

a consistent understanding of these shared concepts. This gives ontologies their power of

promoting knowledge sharing.

Nowadays, ontologies are being used as some form of formal representation for the

terms and concepts of a particular domain of interest in a particular situation or problem

context. Therefore, ontologies are used to promote an agreement on some shared concepts. A

more generic definition for an ontology is “An ontology is an explicit specification of a shared

conceptualization that holds in a particular context” [Schreiber, 2008]. As already mentioned,

the purpose of an ontology is to describe facts assumed to be always true, by means of defining

vocabularies which users of a certain domain agree with, as means to conceptualize this

domain. The concepts of the domain are organized by means of concept hierarchies (or

taxonomies) using the vocabularies of the domain. Furthermore, within these concept

hierarchies concepts are related to each other by means of properties. Properties govern how

each concept should behave within the domain, i.e. they define the roles of the concepts within

the domain. Additionally, an ontology could define restrictions on concepts or properties to

govern the relations between the concepts of the domain. Furthermore, rules could be added to

indicate how additional knowledge within the domain can be inferred. Many ontology

Figure 4.2: Sample Semantic Network

Car Vehicle

Red Colour

hasColour

Is a

Is a

Car 1

Is a

Chapter 4: Background

54

languages exist to represent ontological knowledge but recently the Web Ontology Language

(OWL) gained great popularity in providing formal and portable ontologies (more details in

section 3.3.3).

Several types of ontologies exist depending on the purpose of the ontology. For

example, ontologies can be used to describe generic domains these are often called

Foundational ontologies (also called upper ontologies), they provide generic terms and

concepts that can be used within other more specific ontologies, therefore allowing for

knowledge reuse. For example, the Time ontology [Time Ontology in OWL, 2006] defines the

temporal content of Web pages and the temporal properties of Web services. The ontology

provides a vocabulary for expressing facts about topological relations among instants and

intervals, together with information about durations, and about date-time information. Other

such ontologies are the Workflow ontology [Sebastian et al., 2008], the Space ontology [space

ontology, 2011], and the Basic Formal Ontology (BFO) [Grenon, 2003]. Domain ontologies are

more restrictive; they are used to provide a more specific representation of concepts and

relations within a certain domain in a certain context. Domain ontologies are the most common

types of ontologies for the sake of knowledge representation for problem solving. They not

only capture the terms and vocabularies used in a certain domain but also capture the

restrictions that govern the relationships between the concepts of this domain. Additionally,

they define the rules that define possible inferences. Examples of such ontology are: the Gene

Ontology [gene ontology, 2011], the Pizza ontology [pizza, 2011] and the Petri-net Ontology

[Gašević and Devedžić, 2006].

Designing an ontology should not be an ad-hoc task, several ontology-engineering

methodologies exist to support the design of a well-formed ontology, each defining its own

terminology for the concepts defined within the ontology. Within these ontology engineering

methods, conceptual structures of a domain are conceptualized in terms of classes, properties

and restrictions. Classes represent the real world concepts while properties represent the valid

behaviour of these concepts, and restrictions represent the set of rules governing the relations

between the concepts of the domain. Most ontology engineering approaches
22

 include the

following phases for defining an ontology:

1. Define classes in the ontology: domain concepts are represented as classes in the

ontology. The vocabulary used in the ontology to characterize the domain should

confirm to its usage by the domain experts. Classes are consolidated concepts within

the domain.

2. Arrange the classes in a taxonomic (subclass–superclass) hierarchy: Find

specialization/generalization relations between the concepts of the domain. Organize

the domain concepts such that the top most concepts are the most generalized ones,

concepts become more specific as we approach the bottom of the hierarchy. The leaf

concepts are the most specific ones.

3. Define object properties (roles): starting with the top most concepts, identify the

properties that hold for these concepts and all subsequent child concepts. Object

properties identify the allowed relations between the different concepts of the domain.

Each object property has a domain and range. A domain specifies the concept to which

it belongs, while the range specifies the concepts that it is allowed to interact with (i.e.

connect to). Define all the concept properties moving from the more generic concepts

to the specified ones.

4. Define data properties: concepts may also be associated with data properties and

describing allowed domains (types) for these properties:

22

 Terminology used is based on the Iterative Engineering approach defined in [Noy et al., 2001]

Chapter 4: Background

55

5. Define additional restrictions: identify additional restrictions that may be defined to

govern the relations between the concepts (classes) (e.g., disjoints, unions, and

intersections). Additionally, restrictions can be used to define rules for inferring new

knowledge.

Once the ontology is defined (i.e. the vocabulary and structure of the knowledge which

it represents) the ontology could be populated with objects (also called instances) that commit

to the structure of the ontology. In this case, the ontology is referred to as a knowledge base.

4.2.4 Rule-Based Knowledge Representation

Rule-based systems form a different category of knowledge representation

mechanisms. Instead of representing knowledge in a declarative static way, rule-based systems

represent knowledge in terms of a set of rules which instruct the system on how it should make

use of the knowledge or “facts” it stores. A rule-based system consists of a set of IF-THEN

rules, a set of facts, and an inference engine. An inference engine is an interpreter controlling

how the rules are applied to these facts [Hayes-Roth, 1985]. A typical rule is structured as

follows:

Syntax: IF <premise> THEN <action>

The rule premise can consist of a series of clauses and is often referred to as the

antecedent. The premise evaluates to a Boolean value. In the premise, the logical connectives

AND, OR and NOT can be used. The action refers to a series of statements that hold when the

premise is true. The action is also referred to as the consequent. The interpretation of a rule is

that if the antecedent can be satisfied the consequent can too. If the consequent defines an

action, the effect of satisfying the antecedent is to schedule the action for execution. If the

consequent defines a conclusion, the effect is to infer the conclusion [Hayes-Roth, 1985]. For

example the rule:

IF Male(x) AND hasChild(x,y) THEN Father(x)

also represented as,

IF Male(x) ˄ hasChild(x,y) → Father(x)

This rule states that if some object x is a male and it has a hasChild relationship with

another object y then the object x is also a Father. Rules affect the knowledge contained in the

system. This knowledge is represented by a set of facts which express assertions about

properties, relations, and propositions (e.g., Male(‘peter’)).

Rule-based systems can reason over data in two different ways: forward chaining and

backward chaining. In a forward chaining system, the system starts with the initial facts, and

keeps using the rules to draw new conclusions (or take certain actions). In a backward chaining

system the system starts with some hypothesis (or goal) and tries to prove the correctness (or

incorrectness) of this hypothesis. Which type of reasoning mechanism is suitable depends on

the problem to be solved. Forward chaining systems are primarily suitable for data-driven

problems, while backward chaining systems are more suitable for goal driven problems.

4.3 Semantic Web Knowledge Management Techniques

The Semantic Web is simply a web of data, described and linked in ways to establish

context or semantics that adhere to defined grammar and language constructs [Hebeler et al.,

2009]. Tim Berners-Lee envisioned the Semantic Web as “The Semantic Web is not a separate

Chapter 4: Background

56

Web but an extension of the current one, in which information is given well-defined meaning,

better enabling computers and people to work in cooperation.” [Tim Berners-Lee et al., 2001].

The Semantic Web community proposed several knowledge representation

mechanisms, each different in its expressivity and thus power and usage. The primary goal of

these languages is to provide a standard among all users of the Semantic Web. In the meantime

they are light-weighted to meet the not so sophisticated need of reasoning on the Web and yet

meet its high availability requirements. In this section, we briefly present the Semantic Web

technologies used in this thesis, namely OWL, querying OWL ontologies, and reasoning on

OWL ontologies.

4.3.1 OWL

The Web Ontology Language (OWL) extends the RDF Schema
23

 and uses the same

RDF syntax as its base grammar. Additionally, OWL uses the vocabulary of RDF and RDFS

where possible, so RDF
24

 and RDFS tools could process OWL ontologies that fit into their

limited expressive power. In terms of semantics, OWL is heavily based on Description Logic.

Furthermore, OWL includes mechanisms to import other ontologies and Semantic Web

documents across the Semantic Web.

An OWL ontology consists of a set of axioms and facts that describe the domain.

Instead of the typical RDF triple (subject, predicate, object), OWL describes the domain in

terms of classes, properties, individuals, data types and values (also called concrete domains in

Description Logics). Classes represent concepts in the domain; they can be organized in a

taxonomy like structure to indicate sharing of characteristics among the concepts (i.e.

generalization-specification relation). A class is described by means of its name. Furthermore,

anonymous classes can be described; in this case class descriptions can be composed from all

of the above components using various constructors (e.g., union and intersection). Properties

describe relationships (also roles) between pairs of individuals. Individuals represent the

instances that exist in the domain; an individual can belong to one or more classes. In OWL,

individuals can have data type attributes. OWL uses the XML Schema data types, for example:

car1 hasColor “red”, where “red” is a string.

In the original proposal of OWL (OWL 1, and OWL 1.1), OWL has three increasingly

expressive sublanguages: OWL Lite, OWL DL, and OWL Full [OWL Web Ontology

Language Overview, 2004]. OWL Lite supports those users primarily needing a classification

hierarchy and simple constraints. It has a lower formal complexity than OWL DL. While OWL

DL supports those users who want the maximum expressiveness while retaining computational

completeness (all conclusions are guaranteed to be computable) and decidability (all

computations will finish in finite time). OWL DL includes all OWL language constructs, but

they can be used only under certain restrictions (for example, while a class may be a subclass of

many classes, a class cannot be an instance of another class). OWL DL has the same

expressivity as Description Logics. On the other hand, OWL Full provides maximum

expressiveness and the syntactic freedom of RDF with no computational guarantees. This

comes on the cost of its reasoning capabilities; therefore reasoning with OWL full is

undecidable.

23

 [RDF Primer, 2004]
24

 [http://www.w3.org/TR/rdf-syntax-grammar/, 2004]

Chapter 4: Background

57

As of November 2009, W3C introduced a new version of OWL, OWL 2 [OWL 2 Web

Ontology Language Document Overview, 2009]. OWL 2 is based on SROIQ
25

(D) and so

extends OWL with qualified cardinality restrictions and with significantly extended

expressivity with respect to properties. For example, OWL 2 provides the ability to assert that

properties are reflexive, irreflexive, asymmetric, and disjoint, and the ability to compose

properties into property chains. OWL 2 also weakens the name separation restriction imposed

in OWL. In OWL 2 the same name can be used for a class, a property, and an individual.

[Horrocks and Patel-Schneider, 2010]. Similar to OWL, OWL 2 has three profiles which define

language fragments that have desirable computational properties and in particular lower worst-

case complexities for the inference problems related to OWL DL
26

. OWL 2 profiles are: OWL

2 EL, OWL 2 QL, and OWL 2 RL. OWL 2 EL is based on the EL++, a Description Logic for

which standard reasoning problems can be performed in time, that is, polynomial with respect

to the size of the ontology. In OWL 2 EL, the restrictions on class expressions rule out the use

of universal quantification, cardinality restrictions, disjunction, negation, enumerations

involving multiple individuals, and most property characteristics. OWL 2 QL is based on DL-

LiteR, a Description Logic for which conjunctive query answering can be implemented using

conventional relational database systems and so can be performed in LOGSPACE with respect

to the size of the data (individual axioms). It is aimed at applications that use very large

volumes of instance data, and where query answering is the most important reasoning task. The

OWL 2 RL profile is aimed at applications that require scalable reasoning without sacrificing

too much expressive power. It is designed to accommodate both OWL 2 applications that can

trade the full expressivity of the language for efficiency, and RDF(S) applications that need

some added expressivity from OWL 2. Inspired by Description Logic Programs, OWL 2 RL

defines a syntactic subset of OWL 2, which is suitable for implementation using rule based

technologies, and presenting a partial axiomatization of the OWL 2 RDF-based semantics in

the form of first-order implications that can be used as the basis for such an implementation.

[Horrocks and Patel-Schneider, 2010].

4.3.2 Querying RDFs/OWL Ontologies

The W3C proposed a query language for querying RDF graphs, named SPARQL –

Simple Protocol And RDF Query Language. SPARQL is a standard language for querying RDF

data published on the web, either stored natively or viewed via middleware. SPARQL offers a

syntactically SQL-like language for querying RDF graphs via pattern matching, as well as a

simple communication protocol that can be used by clients for issuing SPARQL queries against

RDF graphs [Della Valle and Ceri, 2011]. SPARQL can exploit some Semantic Web inference

mechanisms allowing applications to query information from more than one RDF graph at a

time or alternatively query integrated information from multiple RDF graphs. For example, it

supports queries whose answers are not directly specified in the RDF graph, but that can be

inferred using a set of inference rules.

Moreover, given that data can be published on the web using different vocabularies,

SPARQL specifications propose different query forms based on the endpoint(s) being queried

and based on how the results of the query should be returned. For example, the SELECT and

CONSTRUCT forms are suitable for issuing queries against known endpoints that expose data

25

 SROIQ is an extension of the description logic underlying OWL-DL, SHOIN, with a number of

expressive means to improve its expressivity and which do not affect its decidability [Horrocks et al.,

2006].
26

 Reasoning with OWL DL is based on an extension of description logic named SHOIN [Horrocks et

al.,1999]

Chapter 4: Background

58

using known vocabularies. The SELECT form returns results in a tabular format using XML,

whereas the CONSTRUCT form returns results in RDF. Therefore allowing users and

applications to query the knowledge represented with one or more RDF graphs.

4.3.3 Reasoning on RDFs/OWL Ontologies

Reasoning means using the already existing knowledge (axioms and assertions) to infer

new knowledge. A program that does so is called a reasoner or an inference engine. The RDFS

and OWL standards define what inferences are valid, given certain patterns of triples. The

semantics of the vocabulary of RDFS and OWL instruct inference engines to how they should

infer given patterns. As an example the rdfs:SubclassOf defines hierarchies of concepts,

therefore any valid RDFS/OWL inference engine should infer the complete hierarchies of

concepts within the ontology. For example given the two triples (Female, rdfs:SubclassOf,

Person) ,(Mother, rdfs:SubclassOf, Female), a valid reasoner should infer the triple
(Mother, rdfs:SubclassOf, Person).

Most reasoners on the Semantic Web are Description Logic reasoners, which apply the

Tableau Reasoning algorithm [Baader et al., 2003]. Some of the well-known Semantic Web

reasoners are: FaCT++ [Tsarkov and Horrock, 2006], HermiT [Motik et al., 2007], Racer pro

[Haarslev and Möller, 2001], and Pellet [Sirin et al., 2007].

FaCT++ is an open source C++ reasoner that implements the tableaux algorithms. The

reasoner performs classification
27

 of the ontology, while doing so it uses a KB satisfiability

checker in order to decide subsumption problems for given pairs of concepts. A drawback of

FaCT++ is that it does not take OWL ontologies directly nor any remote files. A utility

program digFaCT++ takes local files in DIG
28

 and translates it to the reasoner through the DIG

interface. The tell and ask commands are used to communicate with the reasoner.

HermiT is a new OWL reasoner based on a novel “hyper-tableau” calculus. The new

calculus addresses performance problems due to non-determinism and large model size. Similar

to Fact++, HermiT can determine whether the ontology is consistent, and identify subsumption

relationships. It can handle multiple OWL ontology formats, and supports both OWL DL and

OWL 2. Additionally, HermiT supports DL-safe SWRL rules. HermiT is available as an open-

source Java library, and includes both a Java API and a simple command-line interface. Being

quite recent HermiT is not very stable yet.

Racer is a commercial OWL reasoner, which implements a highly optimized tableaux

calculus for deciding the ABox consistency. It supports highly optimized special purpose

inference procedures for sublanguages of Description Logic, which are applied automatically

whenever applicable to the input problem for maximal performance. The sound and complete

inference algorithm with the highest performance is selected automatically.

Pellet is an OWL DL and OWL 2 reasoner; it implements the Tableau Reasoning

algorithm. Additionally, Pellet provides some support for ontology debugging by providing

support for justifying entailments. Furthermore, it provides support to reason over ontologies

containing SWRL rules [Horrocks et al., 2004]. It provides support for safe SWRL rules, i.e.

rules that would keep the reasoning process over the ontology sound and complete.

Furthermore, Pellet provides support for some of the SWRL built-ins. Pellet was implemented

with usage for the Semantic Web in mind; therefore it provides some important facilities such

27

 i.e. computes and caches the subsumption partial ordering (taxonomy) of named concepts
28

 The DIG Interface is a standardised XML interface to Description Logics systems developed by the

DL Implementation Group

Chapter 4: Background

59

as reasoning on individuals (ABOX reasoning) and query answering. Pellet is open source and

is available as an open-source Java library, and includes both a Java API and a simple

command-line interface.

4.4 Knowledge Management Applied to Software Variability

Many authors have noticed the importance of applying knowledge management

principles to analyse and understand software variability or to aid in the development of

variable software. Two principles exist. Firstly, there is the use of different knowledge

representation techniques to map knowledge in variability models, namely feature models. The

mapping is done such that every “feature” in the feature model is considered a first class

concept in the defined knowledge model. Variability represented by these features is mapped to

restrictions that are made part of the knowledge model. These restrictions define how the

different concepts (i.e. features) are linked together via the relations. The type of the concepts

that the feature maps to depends on the knowledge representation technique used. For example,

some of the existing mappings are implemented via Description Logic (DL), Higher Order

Logic (HOL), and OWL. Examples of the first principle have been shown in section 3.1.The

second principle for applying knowledge management to analyse and understand software

variability is based on using knowledge representation techniques to formulate knowledge

within a certain domain (i.e. problem domain), in addition to the variability within that domain.

In a next step, this information is used when developing the software. Examples of the second

principle are:

Mohan & Ramesh [2003] define an ontology that catalogues the different concepts

associated with variability in product line development, such as variation points, variants,

variability phase, and variability patterns. The ontology is then used to define the elements

characterizing the knowledge elements necessary for managing variability in product lines. The

defined ontology also captures various variability modelling mechanisms thereby aiming to

provide support for mechanism selection. The authors also provide a knowledge management

tool integrated with the ontology to facilitate knowledge capturing and retrieval for variability

management. The developed system was based on Microsoft Access.

Lee et al. [2007] use ontology similarity measure to analyse feature models. A

semantic-based analysis criterion is proposed to analyse commonality and variability of

features by changing a feature model of a specific domain to a corresponding feature ontology.

The purpose of the approach is to overcome feature ambiguity problems (e.g., duplication of

features and inaccurate meaning of terms used) when multiple stakeholders are modelling the

system. The approach starts with defining a syntactic meta feature model and attributes of each

element in the model. Next, a feature model of the target domain is constructed based on the

defined meta feature model. The constructed model is then transforming into an ontology and

store it in a Meta Feature-ontology Repository. Next, a feature model of the same product line

is constructed and transformed into an ontology. Ontology based semantic similarity measures

are then used to compare the two ontologies for their similarity and differences. Common

features represent common domain concepts, which could be reused in other product lines

while variable concepts are inspected to check whether they actually represent new concepts, or

not. New concepts are then defined as variable characteristics of the product.

Ferreira et al. [2009] propose a formalization of an approach that combines multi-stage

(time-variant stages), with ontological support and multilevel primitives (abstraction levels) for

the insurance domain software process development. They propose that conceptual models

underlying the different business domains (like banking, insurance, industry, and others) need

to be explicitly defined by ontologies to promote a shared understanding of these concepts.

Chapter 4: Background

60

Ontologies will act as a guideline containing the core business and development concepts

required by the model driven tools to generate specialized and business validated software

artefacts.
Johansen et al. [2010] motivate the need to bring feature modelling and ontology

techniques together to gain the benefits of the formality of ontologies in designing feature

models. They propose using an ontology to accurately express the domain of interest. Therefore

the authors propose establishing a mapping between the feature model of a given software

product line and the ontology that defines the same software product line in order to provide

unambiguous semantics of the terms used in the feature model. Additionally, the authors

propose that a mapping should also be defined from the ontology to feature models to allow

processing an ontology and reverting the information back to a feature model.

4.5 Summary

In this chapter, we have given an overview of the domain of knowledge management.

Knowledge management is the discipline under which knowledge in a certain domain is made

explicitly available for the sake of designing processable models. Processable models make

knowledge about a certain domain explicit and turn it to actionable knowledge, i.e. knowledge

that is available and computable. We also presented some of the basic concepts for defining a

conceptual model of some domain of interest. Next, we listed some of the relevant knowledge

representation techniques which allow to formally represent the concepts, roles and restrictions

to model a certain domain of interest. Next, we briefly presented different data representation

technologies that are used in this thesis. We presented how the Semantic Web provides the

tools that make knowledge machine processable and provides standardized languages for doing

so. Additionally, it provides the technology that allows to reason on this information as well as

querying this information. Finally, we conclude with related work in the area of using

knowledge management techniques to represent and realize software variability.

Chapter 5: Challenges for Software Variability Modelling

61

Chapter 5

Challenges for Software Variability

Modelling

The purpose of this chapter is to present the conclusions drawn from our study on

mainstream feature modelling techniques with respect to the challenges and limitations of

current feature modelling techniques. Identifying these was the first step towards identifying

the requirements for effective feature modelling and management of the related knowledge.

Overcoming them is a major objective of our proposed solution, as already stated in section 1.6.

As already explained, feature modelling is an important phase for efficiently planning

the variability opportunities of the software (or software product line) under consideration. As

mentioned, feature-oriented variability modelling is a preferred technique to discover and

represent variability, because features are abstractions that all stakeholders can understand.

Furthermore, features represent the building blocks that makeup the software. The feature

modelling technique shows how these building blocks could be varied to provide the necessary

required differentiation between the possible products. It also shows the blocks that remain

constant to every product of the product line. As such, feature models contain important

knowledge that is not only useful for planning the variability opportunities of the software but

also in later stages of its life cycle. Feature models allow companies to be in control of the

complexity of their products because it contains the information about the features of the

products, their variability, and complexity. This means that at any point in time, the company

should be able to query and inspect the model(s) for information (i.e. management of the

feature models’ information), therefore allowing for more flexibility in case of changes, or

when introducing new features or new products to the product line.

The challenges presented in this chapter were the driving force for the Feature

Assembly Modelling Method (presented in chapters 6 and 7) and the Feature Assembly Reuse

Framework (presented in chapter 9) presented in this thesis. The management of information in

feature models is handled in chapter 10. In this chapter, we focus on identifying the

requirements for effective feature modelling and information management. First, in order to

answer research questions RQ1.1 (Do current feature modelling techniques provide means to

understand and express complexity?) and RQ1.2 (What are the limitations and practical issues

of current mainstream feature modelling techniques?), we will discuss the limitations of

mainstream feature modelling techniques (described in section 5.1), and secondly, in order to

find an answer research question RQ2 (How can the knowledge in feature models and features

be captured and unlocked?), we will identify the challenges related to managing the

information provided by feature models (described in section 5.2). Based on this information,

we provide a list of requirements for Feature Assembly in section 5.3.

Chapter 5: Challenges for Software Variability Modelling

62

5.1 Limitations of Mainstream Feature Modelling Techniques

As already mentioned in chapter 2, feature models are used to represent the

commonalities and differences in variable software by describing the features that make up the

software, how they are related, and how they contribute to the variability of the software.

Feature models relate features by means of a AND/OR hierarchical structure, describing how

features are broken up into more finer-grained ones. There are no clear guidelines on how this

decomposition should be done and when it should stop; it is left to the intuition of the

practitioner. For small applications this works fine, as features are perceived quite easily and

often represent the main system capabilities and components. Yet, in practical cases, there is

usually great doubt on how to apply the feature modelling technique. As a consequence,

companies have defined their own notations and techniques to represent and implement

variability. Examples are Bosch [MacGregor, Bosch Experience report, n.d.], Philips Medical

Systems [Jaring et al., 2004] and Nokia [Maccari et al., 2005]. Yet, the proposed notations are

tailored to each company’s specific needs for modelling variability in their product line. Bosch

adopted a hierarchical structure of features similar to feature models but new semantics were

introduced to better indicate how features relate to variability and how they relate to each other.

For example, an “is realized by” relationship was introduced to represent how features depend

on each other. Philips Medical Systems had a scalability issue; therefore, they defined the

“Variability Categorization and Classification Model” which helped them use a building block

method to define variability in their MRI product line. While feature interaction and scalability

issues were more important for Nokia, they adopted a separation of concerns approach for

devising higher-level features. For them, the evolution and changing of features over time was

very important, documentation was used to specify the system features and relations. Moreover,

and a confirmation of our findings, a recent study on the application of feature models in

practice [Hubaux et al., 2010b] reveals that there are very few reports on the use of feature

models in practice. That study shows that out of the available literature of software variability

only 16 cases were relevant. Furthermore, this study shows that only two of the 16 cases claim

success in applying feature models, while two reports mention a failure in using the technique.

In addition, five cases were false positives i.e., cases for which the applications of feature

models turned out to be missing or too vague to tell anything about their fitness.

We started with analysing the existing mainstream feature modelling techniques in

order to understand their capabilities
29

 in addition to their limitations. The following limitations

were identified:

L1. Difficulties in using the feature modelling technique in practice

L2. Ambiguity in modelling concepts

L3. Lack of abstraction mechanisms

L4. Limited reuse opportunities

Limitations L3 answer our research question RQ1.1 questioning about the support for

understanding and expressing complexity. While limitations L1, L2, and L4 partially answer

our research question RQ1.2 looking for the limitations of current feature modelling

techniques. Limitation L4 also provides some insight on the obstacles of introducing modelling

with reuse for creating feature models; this will help us answer RQ1.5 (How can the principle

of “modelling with reuse” be introduced to feature modelling?). We will discuss each of these

29

 More on this analysis will be given in chapter 6; we focus in this chapter on the limitations of

mainstream feature modelling.

Chapter 5: Challenges for Software Variability Modelling

63

limitations in more details in the next subsections. We also list the impact of these limitations

and the consequences we took in order not to fall in the same pitfalls.

5.1.1 Difficulties in Using the Feature Modelling Technique in Practice

As already mentioned in chapter 2, there are many variations of the original feature

modelling technique, FODA. Some of these variations have different notations to represent the

semantics provided by FODA such as FORM [Kang et al., 1998] and FeatuRSEB [Griss et al.,

1998]. While other feature modelling techniques define new notations as well as new semantics

for modelling the variability of features, such as Riebisch et al.’s feature model [Riebisch et al,

2002], and PLUSS [Eriksson et al., 2005]. Other extensions of FODA, such as extensions to

include cardinality [Czarnecki et Kim, 2005] and feature constraints [Ye et Liu, 2005], also

exist. With all these differences in semantics, as well as in notations, it is not obvious for

practitioners to decide which one is the most appropriate to select. In addition to the existence

of many feature modelling methods, the FODA based feature modelling techniques adopted in

these methods also pose some other problems that hinder their use in practice. We list here

these issues and their consequences.

L1.1. What is a “feature”?

Many definitions of “feature” exist; actually each technique is using its own definition. For

example, some of the common definitions of feature are:

1. A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a

software system or systems [Kang et al., 1990].

2. A feature is a logical unit of behaviour specified by a set of functional and non-

functional requirements [Bosch, 2000].

3. A feature is an increment in program functionality [Batory, 2005].

4. A feature is a functional requirement, a reusable product line requirement or

characteristic [Bosch, 2000].

5. Features are prominent and distinctive system requirements or characteristics that are

visible to various stakeholders in a product line [Lee et al., 2002].

6. A feature is a requirement or characteristic that is provided by one or more members of

the software product line [Gomaa, 2005].

7. A feature is a small client valued function [Palmer and Felsing, 2001].

8. Features are an interpretation of the requirements [Van Gurp et al., 2001].

9. A feature is a triplet, f = (R;W; S), where R represents the requirements the feature

satisfies, W the assumptions the feature takes about its environment and S its

specification [Classen et al., 2008].

Consequences

 It can be seen from these different definitions that features can be considered from

different points of view. While the first, fifth and seventh definition take the user’s

perspective for defining what a feature is, the second, fourth, sixth, eighth, and ninth

definition take the requirements perspective for defining what a feature is.

Additionally, the third and the seventh definition take the functional perspective for

defining what a feature is. This observation implies that a feature may have many

different faces, making it difficult to base feature analysis on only one point of view or

Chapter 5: Challenges for Software Variability Modelling

64

one perspective. Therefore, when analysing features of software, many perspectives

could be taken into consideration.

L1.2. No clear modelling guidelines.

Feature modelling is not widely adopted in industry. This may be due to the fact that the

modelling concepts are not well defined, as well as to the lack of practical guidelines for

creating feature models [Lee et al., 2002 b]. As stated by Lee “the fuzzy nature of feature

makes it difficult to formalize its precise semantics”. Furthermore, no clear guidelines exist

on the level of detail needed for a feature model be, i.e. when should the decomposition of

features stop. It is implicit in the feature model literature that the feature models provide an

overview of the top-level features visible to users. In our opinion, the modelling process

should stop when there is no longer any variability in the modelled features. If a node (or

possible decompositions) does not introduce variability then the modelling should stop, this

is because feature models are intended to model variability in the product line and not

intended to model functionality per se. On the other hand, the goal of feature modelling is

modelling variability and commonality. Therefore, practitioners should focus on

identifying characteristics of products in terms of commonality and variability, rather than

describing all details of the product implementation, which could be done using other

modelling techniques.

Consequences

 There is a need for a method that guides the users in how to use the modelling

technique. For example, it should be easy to know what is a feature and what not, and

when the modelling process should stop, i.e. a criterion for stopping feature

decomposition should be defined.

L1.3. Missing Link with Variability Specifications

Mainstream feature modelling techniques don’t link their notation of features with the

notation of variation point and variant, which are preferred terms among stakeholders

interested merely in variability [Bosch, 2001]. Such a link would facilitate communication

between feature modelling practitioners and other stakeholders interested merely in

variability.

Consequences

 It is important to provide a mapping from variability notations (in terms of variation

points and variants) to feature model notations (in terms of features, feature types and

feature relations).

L1.4. Hierarchical top down modelling approach.

Humans don’t immediately view concepts in terms of hierarchical structures, rather they

use hierarchical structures to analyse and organize the knowledge they have gained about a

certain domain but not for acquiring this knowledge [Aamodt, 1995] [Anderson, 1996].

Moreover, the hierarchical top down decomposition structure adopted in feature models

makes maintenance difficult. This is due to the significant amount of changes required

when new concepts are introduced, or when existing concepts need to be removed.

Chapter 5: Challenges for Software Variability Modelling

65

Consequences

 There is a need for a modelling approach that allows combining bottom up and top

down approaches to define features.

 There is a need for a modelling technique that easily support introducing new features

or new variations of features and changes.

5.1.2 Ambiguity in Modelling Concepts

The modelling concepts defined in subsequent FODA based feature models add a great

deal of power for the modelling language in order to achieve more flexibility. Yet, in order to

do so, they also add a great deal of complexity for the modelling language. This flexibility in

the language constructs became a double edged weapon causing practitioners to have some

doubts on applying the technique, and may very easily result in models of questionable quality.

We list here some of the ambiguity problems caused by the non-rigid modelling concepts of

mainstream feature modelling and their consequences.

L2.1. Feature decomposition is overloaded

The decomposition mechanism used in feature models is based on functionality, i.e. a whole-

part decomposition, as well as on variability, i.e. a generalization–specification decomposition.

Not having a clear distinction between these two fundamentally different types of relations, i.e.

functional decomposition and variability decomposition, makes the modelling process difficult

and is a source of errors [von der Massen and Lichter, 2004] [Riebisch, 2003]. It also makes the

resulted feature models difficult to understand for non-domain experts, while one of the

purposes of the use of feature models is to communicate the variability opportunities in the

product line (or domain) to the different stakeholders (e.g., marketing specialists, architecture

engineers, developers, innovation specialists, or even valued customers). Overloaded

decomposition of features will make feature models confusing and the information will not

rigorously be conveyed to the involved stakeholders. This is because feature models do not

make an explicit distinction between composition and specialization. This may introduce

problems. For example, figure 5.1 shows the Graph product Line (GPL) problem introduced by

[Lopez-Herrejon and Batory, 2001]. The figure represents a Graph Product Line that is

optionally composed of a Search feature and mandatory composed of a Graph Type feature.

The Search feature has two alternatives: DFS and BFS. While for the Graph Type feature two

sets of alternative groups are identified. The first group has two alternatives: Directed and

Undirected, while the second group has two alternatives: Weighted and Unweighted.

This introduces two problems. Firstly, the

model holds implicit information (by not

naming the two concepts for which the two

sets provide alternatives) leaving it to the

intuition of the user to understand that

there are two concepts that makeup graph

type (i.e. direction and weight). Secondly,

Graph Type is a mandatory feature, while

its successors are alternative features.

Therefore, it is not clear whether at least

one feature of one alternative group should

be selected, or one feature of each group

should be selected. The first part of the

Figure 5.1 Feature Model of GPL, ambiguity in Graph Type

definition

Chapter 5: Challenges for Software Variability Modelling

66

problem is related to the fact that the Graph Type feature is functionally decomposed in two sub

concepts ‘direction’ and ‘weight’, which are implicitly represented by the alternative branches:

Directed and Undirected; Weighted and Unweighted, which indicates two variability

decompositions. The second part of the problem is a result of not forcing the modellers to

represent the implicit feature decomposition information, and allowing to specify functional

decomposition in combination with variability decomposition at the same time.

Consequences

 There is a need for a modelling technique that supports the distinction between function

decomposition and variability decomposition.

L2.2. Redundancy within the Feature Models

Figure 5.2 shows another example of ambiguity that is caused by redundancy resulted from

combining different types of

variability: F is optionally

composed of F1, and at the same

time F1, F2, F3 and F4 are

alternative descendant features of

F. Although this ambiguity can be

resolved by normalizing (see

section 2.3.1), i.e. allowing each

feature to have only one type as

shown in the figure, the modelling

method itself does not prevent such situations.

Consequences

There is a need for rigorously defined modelling concepts, and methods that control

redundancy in feature and variability specifications.

5.1.3 Limited Reuse Opportunities

In current feature models, a feature is given a type that indicates how the feature

contributes to the variability of the system. This limits the possibilities to reuse a feature in a

different context. For example, a bank transfer payment feature may be mandatory in one

setting while optional in another (e.g., depending on the target market or country). As the type

(here mandatory or optional) is inextricably associated with the feature, it will not be possible

to reuse the feature as it is. In addition, change is also an issue. It is quite difficult to add new

features or change an existing feature (e.g., change its variability type). For example, a Payment

feature may have two alternatives Bank Transfer and PayPal (alternative features), when

targeting new markets this feature may need to be extended with other payment methods (e.g.,

Visa, Mastercard, and Bancontact/Mister Cash). Furthermore, suppose that the Bank Transfer

feature needs to become mandatory to suit all markets while there is a need to select one or

more of the other payment features (OR Features). As the type mandatory is inextricably

associated with the feature, it is not possible to reuse the feature as it is. Such a change requires

deleting the old Alternative Feature group, creating a new OR group, and changing the type of

the Bank Transfer feature to mandatory, this process is shown in figure 5.3. Note that adding

Figure 5.2 Example showing ambiguity of feature models

Chapter 5: Challenges for Software Variability Modelling

67

and removing branches in the feature model tree may not always be a straightforward task (e.g.,

it may need backtracking and reconstruction of more than one branch or even level).

Figure 5.3 Example showing the impact of change in Feature Models

Consequences

 There is a need for separating the feature from how it contributes to variability; it must be

possible to use the same feature in different variability specifications.

5.1.4 Lack of Abstraction Mechanisms

Designing large and complex systems is not easy. Dealing with different aspects of a

system at the same time is difficult and error prone. Therefore, there is a need for abstraction

mechanisms that allow modelling large and complex systems by scaling down the complexity

and size. FODA and subsequent FODA based feature modelling techniques lack explicit

abstraction mechanisms. Usually, high-level features are decomposed into lower level features

in the feature model, but in systems with large feature interactions or a large number of features

this is a cumbersome task. A successor of FODA, FORM, defined four categories to which

features of the system belong: operating environments, capabilities, domain technology, and

implementation techniques. The capabilities category is further categorized into functional

features, operational features, and presentation features. However, we see this categorisation

process as very fragile and impractical. First of all, it is not always easy to decide on the

category of a feature. Secondly it is not a true abstraction mechanism but rather a grouping

mechanism. In reality, a feature may have many faces, which make categorizing features into a

single category a difficult task. Thirdly, the proposed categories will not be suitable for all

types of application.

Consequences

 There is a need for abstraction mechanisms that allow dealing with complex and large

systems.

5.2 Challenges in Managing the Information in Feature

Models

This section aims identifying the required input for answering our research question

RQ2, which deals with capturing and unlocking the knowledge contained in feature models.

There is a need to understand the added value. Additionally, there is a need to determine how to

support unlocking and sharing of information. The need and difficulty in managing variability

and commonality information comes from the fact that software systems have grown in terms

of the number of features they hold and the complexity of relations and dependencies between

these features. Therefore the created feature models could become very large due to the

increasing number of features ranging from a few hundred and jumping up to a few thousand

Chapter 5: Challenges for Software Variability Modelling

68

[Bosch, 2005]. This makes the process of managing the different relations between the different

features of the system, a very difficult task if done manually. Furthermore, there is a need for

supporting the correctness and validity checking of the created feature models, i.e. detecting

conflicting or semantically incorrect feature relations. There is a need for managing the

information in feature models both at modelling time and afterwards, each phase with a slightly

different focus of information management. We will describe each in more details.

5.2.1 Information Management to Support Feature Modelling

Feature modelling is an iterative process involving many stakeholders. Today, the

development of software is usually distributed over several teams. As a result, feature

modelling is usually a distributed task. This means that the management of features becomes

more complex. Two forms of distribution exist. Firstly, distribution in terms of functionality,

i.e. different feature models may be created for different parts of the system. Secondly,

distribution in terms of location due to the fact that different people located at different places

may be involved in the process, each creating parts of the models. Usually the distributed

created parts are not independent; therefore there is a need to allow linking features from

different parts. Additionally, feature dependencies may exist between different parts of the

system. There is a need for maintaining these dependencies by ensuring that the segments of

feature models contain no conflicting information. Some software organizations tend to deal

with this issue by trying to come up with a distribution that reduces the dependencies. For

example, in a report [Maccari and Heie, 2005], Nokia is stating: “The heuristic we adopt is

‘avoid dependencies between people that are not located under the same roof and under the

same organizational entity’”. However, it is obvious that complete independency is not

possible.

Furthermore, dependencies between features are poorly documented. Although,

dependencies will greatly influence the capabilities of the software (through influencing the

selection of features) and the anticipated functionalities, most of the reasons for having these

dependencies and relations cannot be easily captured by the different feature models [Zave,

2004]. Feature dependencies define how features interact together to meet the system’s

specifications. Van Gurp et al. [2000] state “It is virtually impossible to give a complete

specification of a system using features because the features cannot be considered

independently”. According to Griss [2000] the feature interaction problem is characterized as

follows: “The problem is that individual features do not typically trace directly to an individual

component or cluster of components - this means, as a product is defined by selecting a group

of features, a carefully coordinated and complicated mixture of parts of different components

are involved”. Therefore, there is a need for a richer set of feature dependencies that allow

expressing the different semantics (i.e. reasons) of the dependencies. Although this richer set

will not add more expressivity from a configuration point of view, it could convey the rational

of the dependencies to the stakeholders involved in the modelling process (e.g. customers,

marketing and sales, innovation researchers). This kind of information about feature

dependencies should be explicit in the model.

While the modelling method should provide abstraction mechanisms that facilitate the

modelling process, there should also be abstraction mechanisms that allow modellers and

stakeholders of one subsystem to inspect the feature models of other existing subsystems, while

controlling the desired level of details in viewing this information.

Consequences

 There is a need for a processable knowledge model for feature models that allows users to

collaborate and share information contained in their feature models

Chapter 5: Challenges for Software Variability Modelling

69

 The processable knowledge model should make it possible to support different abstraction

mechanisms to view information.

 There is a need for expressive feature dependencies in which the rationale (i.e. the reason

for why the dependency holds, e.g. domain constraint, product line scoping, technical

constraint … etc.) of the dependency is not lost.

5.2.2 Information Management of Feature Models

Feature models should allow finding relevant information about the SPL at any stage in

the development cycle. Keeping track of the features and their variability and commonality

information within an organization helps creating an understanding of the current as well as

future business opportunities. It is also important that this information is transparent to all the

involved stakeholders at any point in time. Because features are mapped to software assets (e.g.

classes, components, libraries, etc.), the influence of the information contained in the feature

models goes beyond the domain analysis stage, it has an impact on all later stages in both

domain engineering and application engineering.

Figure 5.4 Example showing possible use cases for different stakeholders once a knowledge base for the product

feature models exist

Figure 5.4 shows some possible scenarios for different types of stakeholders for

interacting with the information contained in feature models. These scenarios show that

inspecting information contained in feature models and combining it with the expertise and

knowledge of the involved stakeholders should allow them to make more accurate decisions.

Moreover, business opportunities could be missed due to lack of information about possible or

potential variability opportunities. Below, we list the advantages of providing information

management for feature models.

Chapter 5: Challenges for Software Variability Modelling

70

1. Unlock Variability Information: Variability knowledge about software in companies is

very often stored in the heads of people, in paper documents, or at the best documented in

the code. This makes it difficult to efficiently retrieve and share this knowledge. There is a

need for unlocking and sharing information about product features and their variability in

the organization in order to address decisions about future directions or study impact of

changes. By doing so, companies could gain the following merits:

 Expansion of current business opportunities: Companies can identify the similarity

between the new required features and the existing ones. This allows identifying

possible reuse opportunities or the expansion of current variable features (by

introducing new variants).

 Help understand the impact of new upcoming features: By unlocking information about

feature dependencies and features, decisions about future directions or impact of

changes could be more accurate.

2. Enhance Collaboration Among Different Stakeholders: Collaboration among different

stakeholders could be enhanced by enabling efficient retrieval of information about the

different existing features and their interactions (i.e. dependencies and relations).

Furthermore, with the help of information processing techniques it should be possible to

query the (processable) feature model for useful information, such as possible variants of a

certain feature, features that exclude another feature, search whether a specific feature

exists, and so on. There is also a need to provide different stakeholders with different levels

of abstractions. Not all stakeholders are interested in all features of the system; likewise

different stakeholders need to be able to explore the system with different level of details

(e.g., the level of details required for sales persons is different than that required for

developers).

Consequences

 There is a need for a processable knowledge base of feature models, and users should be

able to query and interactively explore this knowledge base.

5.3 Recommendations for Feature Assembly

In the previous sections, we have showed the limitations of current feature modelling

techniques and the consequences they have on the practical use of these techniques. As already

mentioned, these limitations have led to defining the Feature Assembly approach, the major

contribution of this thesis. Furthermore, we also have indicated the need for a proper feature

information management. In this section, we list the requirements formulated for enhanced

feature modelling and for efficient feature information management.

Requirements for enhanced feature modelling:

1. Provides unambiguous modelling concepts with clear semantics. In particular,

separates the feature from how it contributes to variability; it must be possible to use

the same feature in different variability specifications.

2. Provides a rigorous methodology for feature modelling.

3. Provides different abstraction mechanisms to deal with complex and large systems.

Chapter 5: Challenges for Software Variability Modelling

71

Requirements for feature information management:

1. Allow users to collaborate in developing feature models and share information about

feature models, as well as, allow users to query for information contained in feature

models.

2. Make it possible to support different abstraction mechanisms to view information about

feature models.

5.4 Summary

In this chapter, we presented our knowledge acquisition phase in which we explored

the limitations of current feature modelling techniques. For the existing feature modelling

methods the following limitations were identified: 1) difficulties in using the feature modelling

technique in practice, 2) ambiguity in modelling concepts, 3) lack of abstraction mechanisms,

4) limited reuse opportunities. Furthermore, we identified how these limitations can be

overcome. We also explored the needs of efficient knowledge management for feature models.

We identified the current challenges in efficiently managing information contained in feature

models both during the actual feature modelling phase and further on during the product

development process and after the development of the product. We identified several needs for

such an information management process. There is a need to unlocking information contained

in feature models such as feature interactions, crosscutting features between different

subsystems or components, and the need for supporting different abstraction levels.

Additionally, once feature models are established there is a continuous need to benefit from the

information contained in these models whether for maintenance purposes of for future

expansion of the software. We concluded this chapter with a set of requirements for an efficient

feature modelling method and a processable feature modelling knowledge base.

72

Chapter 6: The Feature Assembly Modelling Technique

73

Chapter 6

The Feature Assembly Modelling Technique

The previous chapter introduced the shortcomings of current feature modelling

techniques and pointed out how these shortcomings have affected the efficiency and ease of

modelling as well as the quality of the created models. We have also listed a set of

requirements that need to be considered by feature modelling techniques in order to overcome

the previously mentioned limitations. This should allow the creation of well-structured,

scalable, and reusable feature models. Taking into account these recommendations has

resulted in the Feature Assembly Modelling technique (FAM). Feature Assembly Modelling

proposes a limited set of easy to use concepts to model variability and commonality. In the

same time, the notations for the concepts restrict the users to creating only well-structured

feature models. Scalability is handled via introducing an abstraction mechanism that allows for

separation of concerns while doing the modelling. FAM also promotes reusability by

supporting both feature reusability and design reusability; this will be presented in chapter 8.

6.1 Feature Assembly Overview

 Modelling of variable software is not an easy task due to the fact that variability comes

at the price of increasing complexity. Therefore, the variability modelling technique should

allow to explicitly represent the variability, clearly indicating its influence on the complexity.

The variability modelling technique should aid the modeller in clearly indicating the features

that have a variable nature (and therefore contribute to the variability of the overall system) and

how they relate to other features in the application. The variability modelling technique should

make it easy to spot variability opportunities as well as indicate how these opportunities can be

tuned to deliver different products. The technique should also take into consideration that

variability highly varies in both its complexity level and granularity levels; the problem

becomes more difficult in large software. Variability in software is often identified in terms of

the variable characteristics, capabilities, and functionality of the software.

The Feature Assembly Modelling technique (FAM) is a feature oriented conceptual

modelling technique for analysing and modelling software that contains variability (aka

software product lines). FAM supports identifying the basic building blocks of the software,

namely features starting at different granularity levels. FAM not only allows identifying

features but also how they are related in terms of their compositional structure, their

contribution to the variability of the software, and their feature-to-feature interactions.

Feature Assembly Modelling proposes a perspective-based abstraction mechanism to

deal with large and complex systems. The perspective-based approach utilizes the separation of

concerns principle while modelling. This is done by adopting a specific mind-set or point of

view when identifying and modelling features. As such allowing to define the features that are

relevant from a particular aspect or viewpoint rather than considering all aspects of the whole

system at once, which usually results in badly structured models.

Chapter 6: The Feature Assembly Modelling Technique

74

The Feature

Assembly Modelling process

starts with a variability

feature analysis phase as

shown in figure 6.1 (this

will be discussed in

section 6.3), which

anticipates potential features

that make up the software

and the level of variability

they hold. Next, a set of

perspectives that represents

the different viewpoints for

modelling the software are

defined. Each of these

perspectives represents a

consolidated point of view

for modelling the software.

We will discuss the

perspective-based approach

and give examples of the

most common set of possible

perspectives in section 6.4.

The next step is to model the

features of each perspective

by defining the feature

relations and the feature

dependencies they hold. This

is done using the modelling

primitives offered by the

Feature Assembly modelling

technique. Finally, it is

important to link the separate perspectives (this will be discussed in section 6.5). We start the

rest of this chapter by introducing a running example (section 6.2).

6.2 Running Example – E-Shop Product Line

From this point forward, we will be using the running example of an E-Shop
30

 product line.

The E-Shop mainly supports navigating through the product catalogue, ordering of products

and shipment of the products to the customers. A common scenario to how this is done is as

follows: a customer selects some products and adds them to this shopping basket. He then

performs the purchase process and the system verifies and processes the customer’s order and

issues the payment of the order. Different possibilities for the payment exist. When the order is

validated by the system and the payment is accepted, the order is fulfilled and products are

delivered to the customer. Products are delivered via electronic delivery or via shipping the

physical products to the customer. To support this general scenario, the system should first

display the products with their available quantities to the customers. The system should also

30

 This case study has been used before as a benchmark in SPL research, a complete feature model of the

E-Shop case study can be found at http://www.hats-project.eu/node/206

Figure 6.1: Overview of the Feature Assembly Modelling process

Chapter 6: The Feature Assembly Modelling Technique

75

provide facilities for the customers to create an account, manage their account, and do online

shopping.

6.3 Variability Analysis

Feature Modelling is a practice to understand the variability of the system being

modelled (e.g., a product line). In domain analysis, features refer to problem space concepts

that define the characteristics, i.e. functionalities and capabilities, of the desired software.

Features are therefore a combination of both what the software can do, i.e. functionality and

what the software embraces; i.e. capabilities. The rules that govern how features could be

composed conceive the amount of allowed variability within the software. A broad definition

for feature is:

Definition 6.1 (Feature)

 A feature is a logical or physical unit of the system.

Note that the definition of feature will be refined later on when we discuss perspectives

(section 6.4).

When these units embrace resemblance, this resemblance is an indication of variability.

A variable feature is a feature that has several different forms. A feature may not be variable by

itself but contributes to variability by means of being an optional part of the product line, in the

sense that it is not required to exist in all the products possibly derived from the product line.

Features stem from two main sources, requirements and domain analysis. The first

source of features, requirements, is defined by Van Gurp et al. [2001] “Features are an

interpretation of the requirements”. In requirements engineering, usually two types of

requirements are distinguished, functional requirements and non-functional requirements. The

functional requirements describe what functionalities the software must provide. Therefore,

they define the functional characteristics of the system and are greatly triggered by the business

requirements and domain requirements. Functional requirements define the scope of the

system, the product boundaries, and its connections to adjacent systems. Non-functional

requirements usually capture all types of other requirements like the visual properties of the

system, its usability, and the performance requirements. Non-functional requirements may also

include the product's intended operating environment and any maintainability, usability, risk

analysis, portability and security issues. Non-Functional requirements also include cultural and

political issues as well as legal requirements that the software must conform to [Bray, 2002].

Requirements are typically identified via use case scenarios, workflow descriptions and

operational details provided by stakeholders [Van Lamsweerde, 2009]. Product requirement

documentations that document the objective of the software and the capabilities and

characteristics it should contain are the output of this phase and the input to the feature analysis

phase. Going back to the definition of van Gurp, then identifying the requirements leads to

identifying the features.

The second source of features is domain analysis, where features stem from analysing

the requirements of a certain problem domain as defined by Gomaa [2005] “A feature is a

requirement or characteristic that is provided by one or more members of the software product

line”. Domain analysis can be distinguished from the single system approach in that its

objective is to represent exploitable commonalities among many systems [Kang et al., 1990].

Domain analysis starts with identifying the scope of the domain. In order to create a feasible

domain analysis, the boundaries of the domain should be clearly identified. This is done by

identifying the problem scope or the problem domain. Next is the context analysis, which

Chapter 6: The Feature Assembly Modelling Technique

76

defines the context of the domain, and the main concepts and characteristics of the domain are

identified. This phase also includes identification of project constrains, and relations between

the domain analysed and other domains. Sources of information for this stage include: domain

experts, the study of similar domains, and the study of existing systems. In domain analysis,

features represent concepts in the domain; the domain vocabulary should be used to name

features.

Whether starting from analysing requirements of a single system that holds variation or

performing a more through domain analysis for a family of systems (i.e. product line) or

alternatively assimilating the features from both techniques, a feature represents a unit that will

satisfy a certain requirement. Features can be found by mining for higher level parts that

characterize the required software and identify its capabilities. These features will be nouns in

the problem statement (e.g., documentation) that describes the required software characteristics,

capabilities, or segments. For these high level characterizing features, it is important to keep a

one to one mapping between requirements and features for the sake of obtaining well defined

and consolidated features.

While identifying the features of the software, it is important to keep in mind that

feature modelling is intended to identify the static capabilities of the software and indicate how

these capabilities can vary; it is not intended for in-depth modelling of functionality and

behaviour. Next to identifying the actual features, it is also important to identify how these

features relate to the variability of the software. Gomaa [2005] states that in product description

documents, statements using could often refer to optional requirements, while statements using

should refer to mandatory requirements. We expand this statement into a more generic set of

possibilities by which variable features can be identified. We do so by answering the following

question: Where does variability come from? Several possibilities exist:

1. Variability may be noticed in advance and explicitly stated in the domain analysis

phase. In this case, the different variants are identified by either defining different

alternatives of a certain feature or defining a list of could include features.

2. Variability may come into the picture when the requirements leave some margin of

freedom (coming from the “openness” of the requirements). In this case, many

different possibilities exist to satisfy a specific requirement. In this case, the outcome is

a set of possible features; these features differ in their importance and validity.

3. Variability may be used to represent prospective capabilities or business opportunities

that are expected to be supported in the future, but are currently not yet supported

either due to current hardware limitations, technology that is not yet supported or

partially supported, time limitations, or cost limitations. In this case the corresponding

features become optional features.

The variability analysis phase helps in identifying possible feature candidates and their

contribution to variability. In addition, some information such as the involved stakeholders,

links and dependencies between the features, and the granularity levels of the defined features

should already be considered but not yet fully defined at this phase. Generally, the features

anticipated in this phase will be of high granularity and represent the core functionality of the

system. It is important at this phase to obtain a general understanding of the key features of the

system and understand for which stakeholders they are important before proceeding to a more

detailed modelling of the features identified. In the E-Shop product line, based on the

requirements described and with the knowledge of the domain we could identify the following

features: Product Catalogue, Product Order, Shopping Basket, Payment, Electronic Delivery,

and Shipping.

The variability analysis phase provides the first brick in overcoming limitation L1,

difficulties in using the feature modelling technique in practice. In the next section, we will

Chapter 6: The Feature Assembly Modelling Technique

77

discuss how a more thorough analysis of the features, their composition, and their dependencies

is established by analysing the features from a well-defined viewpoint using the multi-

perspective approach.

6.4 Multi-Perspective Approach

Feature Assembly uses “perspectives” as an abstraction mechanism. We propose

“perspectives” as an answer to our research question RQ1.3, What kind of support can be

provided during variability and commonality modelling to deal with large and complex

systems?

Often software can be considered from many different viewpoints (i.e. focus of

interest), e.g., from the viewpoint of the user, from the viewpoint of the functionality, from the

viewpoint of the hardware, etc. When modelling large and complex systems, trying to deal with

all the viewpoints at the same point in time is very difficult, and will usually result in badly

structured designs. Therefore, a more scalable approach is to identify the different points of

view required to describe the software, and model the required capabilities (i.e. features) of the

software with respect to one viewpoint (i.e. perspective) at the time. Usually, different

stakeholders may use different perspectives (i.e. different points of interest). We define a

perspective as:

Definition 6.2 (Perspective)

 A perspective is a particular focus of interest or context used for identifying the
features composing the software.

Not only do perspectives help in proving separation of concerns, they also provide an

abstraction mechanism which allows focusing on only those features related to the perspective.

This is important particularly in a complex domain and when many stakeholders are involved.

These stakeholders may have a different focus or different modelling objectives. Separating the

feature modelling process in terms of perspectives helps keeping the features of each point of

view separate, therefore reducing the size of the models as well as the coupling between the

models. Totally eliminating the coupling is not possible, as the features of the different

perspectives are features of the same software and need to accomplish together the tasks and

functionalities provided by the software. Therefore, the perspectives are linked to each other by

linking their different features where needed. In Feature Assembly, the precise definition of the

concept “feature” depends on the perspective it belongs to. We will provide definitions of the

concept feature for different perspectives later on. Revisiting our definition of feature

(definition 6.1), a feature within the multi perspective approach can be defined as:

Definition 6.3 (Feature)

 A feature is a physical or logical unit that acts as a building block for meeting the
requirements or specifications of the perspective it belongs to.

Within a single perspective, the Feature Assembly Modelling technique allows to

formally represent how features are composed and related (section 6.5 presents the Feature

Assembly modelling primitives). A feature belonging to one perspective may relate to other

features in one or more other perspectives via dependencies (more on this in section 6.5.3).

Furthermore, the Feature Assembly modelling technique uses a variable and extensible

set of perspectives. Each perspective describes the variability from a certain point of view (e.g.,

Chapter 6: The Feature Assembly Modelling Technique

78

the User perspective, the Functional perspective, etc.), and together they should describe the

variability of the required software. Therefore, the set of perspectives to be considered during

the feature modelling process is variable (i.e. not predefined) and depends on the software to be

modelled. This means that the modeller has to decide which perspectives are useful for

describing the system and which not. The modeller can even stick to one single perspective

(e.g., the System perspective) if all the variability falls in a single perspective. The Feature

Assembly modelling technique is also extensible in the sense that if the modeller sees a certain

perspective(s) that would help the modelling process, it can be added. The extensibility makes

the technique flexible. While a set of perspectives would be adequate to model a specific

product line, the same set may not be suitable for another product line.

To guide the

modelling process, we

have pre-defined a set of

perspectives that could be

used to model a software

system. These include the

System perspective, the

User perspective, the

Functional perspective,

the Non-functional

perspective, the User

Interface perspective, a

Goal perspective, and the

Persistent perspective. As

already mentioned, it is

not required to consider

all these perspectives nor

is the set of possible

perspectives limited to only these ones. For instance, the Persistent perspective is only useful

when modelling software that needs persistent data. As already mentioned, this set of

perspectives is not fixed and can be further extended based on the needs of the application

under consideration. For example, a Hardware perspective may be considered for embedded

applications; a Localization perspective may be considered useful for software that needs to be

localized for different markets; or a Task perspective may be considered useful for modelling

task-based applications. The correct set of perspectives to use for modelling a system depends

on how the requirements are identified. As already mentioned, one source of identifying

features is by analysing the requirements.

Figure 6.2 shows the various perspectives that could be used to model the E-Shop

application, namely the System perspective, the User perspective, the Non-Functional

perspective, the Functional perspective, the Graphical User Interface (GUI) perspective, and

the Persistent perspective. The lines linking the different perspectives refer to dependencies

that exist between these different perspectives (in the form of feature dependencies as will be

described in section 6.5.1). The solid lines refer to rigid dependencies, i.e. explicit

dependencies that can be expressed by dependencies between features of the corresponding

perspectives; while the dotted lines refer to soft dependencies, i.e. intrinsic dependencies that

are anticipated from the understanding of how the system achieves its functionality but cannot

be represented by dependencies between features. For example, a Payment feature in the

System perspective will require a Payment feature in the Functional perspective indicating the

different available options (i.e. possibilities) for payment. This will also influence the different

payment options for an Order Payment feature in the Graphical User Interface perspective. The

Order Payment Feature in the Graphical User Interface uses the Payment feature in the

Figure 6.2: Overview of the different perspectives that could be used to model

the E-Shop, and how they may relate to each other

Chapter 6: The Feature Assembly Modelling Technique

79

functional perspective; this information is an example of an explicit dependency that should be

explicitly represented in the Feature Assembly Models of this E-Shop. While, for example, an

Order Fulfilment feature in the Functional perspective has no direct influence on the features of

the Graphical User Interface perspective, but of course the type of order made and the type of

available fulfilment for it will have some impact of the defined features of the Graphical User

Interface.

It should be noted that the different perspectives may vary in the level of granularity

used for the defined features, the more specific the focus of the perspective, the more fine

grained the features will be. For example, in figure 6.2, the persistent perspective is very

specific to features that have a persistence nature; therefore in general, the features will be of a

higher level of detail than for instance features in the System perspective, which provides an

overview of the features in the entire E-Shop application and therefore will be of the highest

level of overview. As already explained, in each of these perspectives the definition of feature

is different and based on the context of the perspective. For each of the defined perspectives,

the features belonging to that perspective directly relate to the purpose of that perspective. For

instance, features in the user interface perspective will contribute to the user interface of the

system.

To provide some guidelines on how perspectives can be used to enhance the feature

modelling process, in the next sections we will explain in more details how features could be

identified for the following perspectives
31

: the System perspective, the User perspective, the

Functional perspective, the Graphical User Interface perspective, the Goal perspective and the

Non-functional perspective. For each of these perspectives we will explain the following: its

purpose, when the perspective is used, how to find the features for the perspective, and provide

an example. Furthermore, we will explain the Persistent perspective and how it can be used to

create a variable data model in chapter 7.

6.4.1 System Perspective

 Purpose

The System perspective provides a high level overview of features that need to

be delivered by the system/product line.

 When Used

This perspective provides a bird’s eye view on the system. This overview is

important to obtain an overall view of the size of the system (in terms of number of

core features) and the amount of variability in the system’s main features. The System

perspective should already provide a good overview of the possible (product line)

variants. It must be pointed out that a too detailed representation of the features would

provide too much detail and thus the perspective would lose its objectiveness. On the

other hand, a too shallow representation of the system’s features would give an

incomplete overview of the system which may lead to incomplete specifications of the

system capabilities and how they can vary.

31

 We will only highlight the most common perspectives, to illustrate the multi-perspective feature

modelling concepts and ideas presented in this thesis

Chapter 6: The Feature Assembly Modelling Technique

80

 How to Find Features

This perspective should only focus on high-level features that indicate the

system’s characteristics and capabilities. It is important to bear in mind that the

intension is to model high-level features and pinpointing how they contribute to

variability. The features in the System perspective adhere to the definition of feature as

given by Kang et al. [1990]:

Definition 6.4 (System Perspective Feature)

 A System perspective feature is a prominent and distinctive user-visible aspect,
quality, or characteristic of the system.

A feature in this perspective is a product characteristic that is self-contained,

concise, distinctive, and user noticeable. In simple words, system perspective features

answer the question what capabilities does the system provide? The System

perspective’s features are directly related to high-level requirements of the software.

Identifying high level features (i.e. key features) belonging to the System

perspective is a twofold process; firstly, we mine the requirements (e.g., domain

requirements, customer requirements, documentation, etc.) for candidate key features,

i.e. fundamental features that make up the product. Secondly, once a key feature is

identified, it should be defined how it contributes to the variability of the system (for

high level features this should already be known from the variability analysis).

Establishing a direct mapping between the underlying problem in the problem domain

and the required system in the solution domain should result in high-level features

being directly mapped from key requirements. As an example, a guideline for this

mapping in the case of user driven application would be to look at the use cases
32

 or

user scenarios
33

; the subject of the use case identifies a key feature. We also note that

not all use cases identify key features; this is because use cases may differ in their

granularity. Rather the uses cases that identify high-level system requirements are those

that identify key system features. In other words, uses cases that identify scenarios that

are independent of other scenarios and have no prerequisite scenarios.

 Example

In the E-Shop product line, we might start by identifying the basic capabilities

(e.g., based on the knowledge of the domain and previous domain analysis) of an

E-Shop as the Storefront capabilities and the Store Backend capabilities; from there we

might further drill down to elaborate more in order to explicitly identify the (core)

features composing each of the above mentioned features of the E-Shop. As an

example, the Storefront is composed of the following features: Registration, Product

Catalogue, Customer, Shopping Basket, Order Process, and/or Wish Lists, Customer

Service, and/or User Tracking capabilities. These are key features of the system that

make up the overall systems functionality.

32

 A use case is a list of steps, typically defining interactions between a role (known in UML as an

"actor") and a system, to achieve a goal. The actor can be a human or an external system. [Kulak and

Guiney, 2003]
33

 A scenario is a description of a person’s interaction with a system.

[http://www.infodesign.com.au/ftp/Scenarios.pdf]

Chapter 6: The Feature Assembly Modelling Technique

81

Using the requirements as a source for identifying the features, the following

use cases Registration, Order Process, and Product Catalogue map directly into key

features, while the use cases User Validation, Order Fulfilment, Product Display are

non-key features as they are actually respectively parts of the above-mentioned

features. The next step would be to identify how these high-level features contribute to

the variability of the required system; this is done following the guidelines mentioned

in section 6.3. At this stage it is important to know whether or not the defined feature

contributes to the variability of the system. As an example, in the E-Shop, Registration,

Order Process, and Product Catalogue are all mandatory key features, while Wish List

and User Tracking are optional features.

6.4.2 User Perspective

 Purpose

The User perspective represents the variability in the target users of the system.

This information is relevant for understanding how the variability in users affects the

variability in the features of the system.

 When Used

The User perspective is only relevant in systems/product lines that provide

different functionality/products to different users or different groups of users. In this

case the users affect the variability of the software through their influence on the

selection and/or deselection of features. When the users of the system have an impact

on the variability of the features (in one or more perspectives), this impact needs to be

explicitly modelled. The Feature Assembly modelling approach represents these users

(or actually user classes) as features. By doing so, the influence of the different user

classes on the variability of the system can be made explicit. Therefore, in the

corresponding Feature Assembly models, feature dependencies can be defined to

represent how features are constrained to some specific users.

 How to Find Features

As already mentioned, in this perspective features represent different users

using the system, and who have different needs and different concerns. Users (or

actually the user classes) are mapped to features. Those features share the usage of the

same set of system features, and influence their variability in the same way. The

relations between them and the variations they hold are represented as well.

Definition 6.5 (User Perspective Feature)

 A User perspective feature identifies a set of system users that share the same
concerns and have the same influence on the variability of the system.

 Example

A Quiz product line may have different features based on the target users. If

used by business users it may be required to provide a self-assessment (i.e. used for

employee training). While if used for schools there is a need for delivering both simple

text based quizzes and more advanced quizzes and exams. Furthermore, the amount of

Chapter 6: The Feature Assembly Modelling Technique

82

data stored is different for each type of user. For schools, there is a need for storing and

reporting all information about users taking the quiz, while in the case of business

usage this may not be necessary. In this case, the User perspective will hold the

features Schools and Businesses.

6.4.3 Functional Perspective

 Purpose

The Functional perspective adopts a functional point of view when identifying

features. It allows identifying features that represents the functionality provided by the

system.

 When Used

Features belonging to the Functional perspective are features that have the role

of defining what the system actually does. Functional perspective features can be

considered as building blocks that help realize the system’s functional requirements. It

should be noted that the Functional perspectives identifies what capabilities are

provided by the system, i.e. what the system does, but not how it does it. How the

system performs its functionality should not be part of the feature model, and should be

captured by other modelling techniques.

 How to Find Features

A good starting point for identifying the features belonging to the Functional

perspective is the System perspective. High-level functionalities are already identified

as part of the System perspective, the Functional perspective provides a more focused

and detailed view on these features.

Furthermore, the Functional perspective helps understand the functional

decomposition of the features belonging to the System perspective, taking into

consideration the variability opportunities in this decomposition. On the one hand, it

helps understand how the features contribute in order to provide the overall

functionality of the system. On the other hand, it allows explicitly specifying possible

variations (i.e. variation points and variants) of functionality.

Variability in the Functional perspective is related to the different methods for

achieving certain functionality and the degree of variation to which the functionality

should be realized; multiple possibilities could exist. A note to consider is that

variability of Functional perspective features describes different possibilities available

to achieve certain functionality; this is different than the runtime variability provided

by the system, which refers to the dynamic response of the system as a respond to a

certain action at runtime.

We define the concept feature in the Functional perspective as:

Definition 6.6 (Functional Perspective Feature)

 A Functional perspective feature is a distinguishable well-defined functional
characteristic of the system.

Chapter 6: The Feature Assembly Modelling Technique

83

Each feature should focus on only one functionality (action or verb) related to

only one concept. If a feature represents a complex functionality (related to the same

concept) then decomposing it should be considered. By a complex functionality we

mean a functionality that can be further decomposed into finer grained functionalities.

Decomposition is interesting only if it shows that this complex functionality holds a

level of variation in how it can be satisfied. For example, in the E-Shop, one can define

an Order Process feature that represents the activity of processing an order. This is a

complex feature that could be split up into Order Transaction, Order Approval, Order

Fulfilment and Shopping Basket, each of which represents a separate feature. A rather

different case is when there are different possibilities to how certain functionality is

performed. In this case, this functionality is mapped to a feature that represents a

variation point. The different possibilities for how the functionality is performed are

then considered as the variants of this variation point. For example, in the E-Shop

application there could be three different varieties to how the shop products could be

displayed, therefore one could identify a Display Products feature that represents this

functionality of displaying products, and which is a variation point, that can be further

decomposed into three variant features namely Promotion Oriented, Product Oriented,

and Customer Oriented each with a different rational for displaying the products. More

details about decomposition and variants are given in section 6.5.1.

It must be noted that the Functional perspective may contain features common

to other perspectives (e.g., the System perspective). This is actually an important

characteristic of the Functional perspective as it represents the core functionality of the

system and therefore it will contain features that also have presence in other

perspectives. In particular the Graphical User Interface perspective (mentioned in the

next section) and the Functional Perspective are very related, as in general the users

will stir the functionalities of the system through the user interface. While the

Graphical User Interface perspective focuses on the features from a user interface point

of view, the Functional perspective focuses on the features from a “service” point of

view. As an example, in the E-Shop application, in the Functional perspective, there

will be a sign in feature to provide the functionality to sign in to the E-shop. There will

also be sign in feature in the Graphical User Interface perspective, but here the purpose

is to show that the user should have a user interface component that allow him to sign

in.

 Example

In the E-Shop, one can define an Order Fulfilment feature that is related to one

thing, order fulfilling. Having known that there are three different possibilities of order

fulfilment: service delivery, shipping, and electronic delivery, then the Order

Fulfilment feature (which is then a variation point) will be split up into the features:

Service Delivery, Shipping, and Electronic Delivery (which represent variants of this

variation point). There are also two varieties for validating the shipping of an order, via

the package slip or via the package tracking number. Therefore, the Shipping feature

has two variants Package Slip, and Package Tracking Number.

Chapter 6: The Feature Assembly Modelling Technique

84

6.4.4 Graphical User Interface Perspective

 Purpose

The Graphical User Interface perspective takes visibility in the user interface as

a metric for identifying the features that should belong to it. In this perspective features

are identified based on their availability in the user interface.

 When Used

This perspective should be used if variability is applicable to the user interface.

Then, it becomes essential to explicitly state which parts of the interface are variable,

and how the variable user interface elements relate to the variability in the system’s

functionalities, tasks, users, etc. Features belonging to the Graphical User Interface

perspective are used to model the variability in the user interface. The Graphical user

interface perspective lists the features that are subject to variation; whether they are

interface elements (e.g. menus, toolbars, scrollbars, etc.) or features that have a visual

presence (e.g. Sign Up, Shopping Basket, Favourites List, etc.). There may be various

reasons to have variability in the user interface. Obvious reasons are due to variation in

the application functionality, or variation in how different users view and interact with

the application. Therefore, the variability in the user interface elements should be

aligned with the variability of the features belonging to the other corresponding

perspectives. This is achieved via using feature dependencies.

 How to Find Features

Features belonging to the Graphical User Interface perspective are visible for

the user in the user interface and he/she can interact with them in order to activate some

functionality of the system. Features within the Graphical User Interface perspective

are defined as:

Definition 6.7 (Graphical User Interface Perspective Feature)

 A Graphical User Interface perspective feature is a visible and distinguishable user
interface characteristic of the system.

Features belonging to the Graphical User Interface perspective could be easily

identified by analysing how the users will interact with the system, i.e. how they should

initiate functionalities in order to accomplish their tasks, process information and

respond to the system messages/functions. User interaction with the system is governed

by the (core) requirements of the system; the (variable) functionality provided by the

system impacts how users should interact with the system.

Therefore, features of the Graphical User Interface perspective can be found by

analysing the use cases and/or user scenarios, which describe how the different users

should interact with the system, and/or how different functionalities should be

perceived by different users. In order to find user interface elements that are variable or

are a source of variability, we can look to the type of the use case. Typically, each user

would have a set of use cases that indicate how he/she uses the system. Each use

case/scenario is in general associated with some information indicating the type of use

case/scenario: a mandatory scenario (i.e. a scenario that will always happen), an

optional scenario (i.e. it is one of other options that could happen), or an alternative

Chapter 6: The Feature Assembly Modelling Technique

85

scenario (i.e. either this scenario will happen or some other scenario both can’t happen

together).

The Graphical User Interface perspective is used for identifying features

perceived by the user in the user interface, and identifying how they are composed as

well as the variability that is attached to them if any. Therefore only use cases with user

interaction are the ones that are important for this perspective, how the system realizes

these scenarios should not be considered in the Graphical User Interface perspective.

On the other hand, realisation of these user scenarios is something to consider when

looking for features in the Functional perspective.

As already mentioned, there is also a close connection between the features of

the Graphical User Interface perspective and the Users perspective. This connection is

made explicit in the Feature Assembly Modelling technique via feature dependencies

and will be discussed in section 6.5.1.

It should be noted that the Graphical User Interface perspective is not intended

to create a model of the Graphical User Interface; rather it captures features that

characterize the units composing the user interface and their possible variations.

 Example

In the E-Shop we might imagine the following scenarios:

1. Users can navigate products by one of these techniques

o By category

o By searching

o By similar products

2. Users can navigate the E-Shop in one of the following languages:

o English

o French

o Dutch

o Arabic

o Chinese.

Looking at the first scenario, finding the features is quite straightforward. By

searching for the nouns, we can identify the Navigate Products feature, the feature

itself has no indication of variability therefore it is a mandatory feature. The Navigate

Products feature has three different variations of how the products are visualized to the

users, namely: by category, by searching, and by similar products. Therefore the

Navigation feature is a variation point that has three variants namely: Category,

Search, and Similar Products. The second scenario implies the need for localization of

the E-Shop, i.e. localization of the text to the language of the interface and localization

of the user interface components to suit the direction of the languages supported. Again

searching for the nouns, we identify a Localization feature which is mandatory and has

two parts, Text Localization which is the feature responsible for capturing the

localization of the text and UI Components Localization which is the feature

responsible for the localization of the user interface components (tables, lists, banners

etc.) of the screen; both parts are mandatory features. The feature Text Localization can

be further decomposed into two mandatory features, Text Direction and Cursor

Orientation.

Chapter 6: The Feature Assembly Modelling Technique

86

6.4.5 Goal Perspective

 Purpose

The Goal perspective allows defining features based on the understanding of

the goals of the system. It is recommended for systems that use a goal-oriented

requirements engineering method for identifying and electing the requirements.

 When Used

The Goal perspective is useful when a goal-oriented requirement analysis

method is used to identify the system requirements. Opposed to functional analysis,

goal-oriented requirement analysis focuses on early requirements phases, when

alternatives (i.e. design decisions each of which can satisfy the initial goals) are being

explored and evaluated.

A goal is defined by van Lamsweerde [2009] as “a prescriptive statement of

intent that the system should satisfy”. During the requirements phase, it is considered

important to understand the goals of the system because they answer the “Why”

question of the system (i.e. “Why do we need this system?”). Goals give information

related to the intension of the system and thus they implicitly or explicitly identify the

various internal and external elements that affect the systems intensions. Goals that

answer the why question are referred to as high-level goals, which define the intensions

of the system. These intensions are further refined by asking “How” questions which

might also trigger the “How else” questions which identify hidden or implicit

variability. Goals that answer the How questions identify low-level goals.

 How to Find Features

In the Goal perspective features are found by analysing goals to gain an

understanding of the influences that different requirements of the system have on one

another, for example to identify conflicting goals (and therefore conflicting features).

Goals are typically captured via goal models [van Lamsweerde, 2009] that analyses the

goals of the system and how they relate to each other. Goals differ in their type as well

as in their granularity; some goals identify business constraints and business

requirements, while others identify the restrictions on the system operation. For

example, in the E-Shop, the high-level goal “allow online purchase of products” is

achieved via the sub-goals: “allow product purchase”, “allow order submission”, and

“allow customer tracking”. Furthermore, goals help in pointing out both functional and

non-functional requirements of the system. Goals identifying functional requirements

are referred to as functional goals, goals identifying non-functional requirements (i.e.

qualities) are referred to as soft goals. In the Goal perspective we define the concept of

feature as:

Definition 6.8 (Goal Perspective Feature)

 A Goal perspective feature is a physical or logical unit that acts as a building block
for satisfying a goal of the system.

A Goal perspective feature takes the responsibility of satisfying an achievable

atomic goal. An atomic goal is the simplest form of a goal. Non-atomic goals (i.e. those

goals that can be further decomposed to simpler goals) map to composite features;

Chapter 6: The Feature Assembly Modelling Technique

87

possible alternatives available by these goals map to possible variants that the feature

may have. Another important issue related to variability is that through goals we can

better define options for achieving these goals fully or partially. Therefore, it provides

the opportunity to identify unforeseen variability in the domain (which may or may not

be relevant due to cost limitations, time limitations, etc., but still remain important to

identify for obtaining a complete domain description).

 Example

In the E-Shop application, we can distinguish the following high-level goal:

sell more products, which can be achieved via any of the following three sub-goals:

promote new products, promote best-selling products, and promote products with high

stock. To define a mapping from the goals to features, an achievable goal is mapped

directly to a feature, where the feature will take the responsibility of achieving this

goal. In the example this will result into a Product Promotion feature, which has three

different variants: Best-Selling Promotion, New Products Promotion, High Stock

Promotion. In a similar manner, if we have the following goal for the E-Shop

application: feasible flexible shipping options. This goal has the following sub-goals:

Flexible Shipping, and Meet Shipping Regulations. This last goal is dependable on an

external aspect of the system, namely shipping regulations, which may differ according

to different locations. Furthermore, the Flexible Shipping goal is a high-level goal that

is achieved via the following sub-goals Quality Of Service Selection, Carrier Selection

and Address Specification. The Flexible Shipping goal is not achieved without the

achievements of both its two sub-goals, therefore the goals will map to the following

features: Shipping Options feature which is composed of the following features: the

Shipping Regulations (which is an external feature that has impact on the behaviour of

the system) and the Quality Of Service, Carrier Selection and Address Specification

features.

6.4.6 Non-Functional Perspective

 Purpose

The Non-functional perspective adopts the viewpoint of defining all non-

functional aspects of the system and models how they contribute to the variability of

the system.

 When Used

A system may be influenced by non-functional aspects, also called quality

aspects, which either facilitate or restrict how the system reacts to stimulations from the

surrounding environment and/or from its users. Therefore, non-functional requirements

can be a source of variability in which case it is important to explicitly represent them.

Non-functional requirements often materialize soft goals and their impact on the

variability of the system should not be neglected, due to the fact that they could

influence a wide range of products.

Chapter 6: The Feature Assembly Modelling Technique

88

 How to Find Features

Non-functional characteristics of the system could be an inherent part of the

system, such as quality, security restrictions, or usability; alternatively they could be

related to external parts of the system such as hardware limitations or recovery plans.

Features that belong to the Non-functional perspective are defined to represent these

characteristics. For this reason, we define the concept of feature in this perspective as:

Definition 6.9 (Non-Functional Perspective Feature)

 A Non-Functional perspective feature is a non-functional characteristic of the
system that contributes to or affects the system’s variability.

It is important to keep in mind to define only those features that contribute to

the system’s variability. For example, in the E-Shop application, a non-functional

requirement Response Time with a maximum time value set to 5 milliseconds does not

represent a non- functional feature as it contains no means of introduce variability.

While, a non-functional requirement Bandwidth Utilization which defines the

percentage of bandwidth utilized off the total bandwidth available, is mapped to a

Bandwidth Utilization feature which has two variants, Low and Medium

It should be noted that features defined in the Non-Functional perspective will

be related to features defined in other related perspectives such as the Functional

perspective and the Graphical User Interface perspective. Such relations are maintained

using feature dependencies as will be described in section 6.5.1.

 Example

In the E-Shop application, an important non-functional requirement is Security,

which can vary according to the individual needs of each configured product. Security

can be achieved via Credit Card Verification Codes (CCVC) and fraud detection

services. Fraud detection services include: geographical IP address location checking

(GIPLC), high risk IP address (HRIP), network post query analysis (NPQA), and e-

mail checking. We map this information to a Security feature (which is a variation

point) that has two variants CCVC feature and Fraud Detection feature. The Fraud

detection feature has the following variant features, GIPLC feature, NPQA feature,

HRIP feature, and E-Mail Checking feature.

6.4.7 Discussion

As already mentioned, in FAM we do not restrict the modeller to a particular set of

perspectives. Rather, we provide a set of possible perspectives as guidelines for using

perspectives when modelling variability. In the previous sections, we have provided details for

the following set of perspectives: the System perspective, the User perspective, the Functional

perspective the Graphical User Interface perspective, the Goal perspective and the Non-

functional perspective. Furthermore, this set can be further extended or scaled down. A first

reason to extend or scale down the perspectives is based on the needs of the domain of the

application. For example, a Hardware Interface perspective is useful for embedded device

product lines; a Persistent perspective is useful if the product line has some persistent features

(i.e. features that contain information that should be stored).

Another criterion for selecting certain perspective and not selecting others is the

viewpoint taken while defining the requirements of the system. Different approaches are

Chapter 6: The Feature Assembly Modelling Technique

89

possible for this, e.g., a goal-based approach, use case driven approach, market driven

approach, or user centric approach. As these requirements are used as a source to identify

features, it is useful (and recommended) to use the same viewpoint during feature

identification. Therefore, a goal perspective is recommended when a goal-oriented requirement

engineering approach is/was used. This allows traceability between the requirements and the

solution (i.e. the modelled product line). Therefore, the task-, functional-, and goal perspectives

can be considered as alternatives. The system perspective provides the highest level of

abstraction (or provides the least details); it is required for modelling any application and

provides a good starting point for the modelling process, therefore we strongly recommend it as

starting point. The other perspectives provide more details and represent a different way of

looking at the system.

To help the modeller select the set of appropriate perspectives to use for modelling a

certain product line, we have defined the FAM Perspective Selection Process illustrated in the

flowchart shown in figure 6.3. The FAM Perspective Selection Process indicates that only one

of the following perspectives should be used: Goal, Functional, or Task perspectives. For

example, when using the Goal perspective there is no need to use the Non-Functional

perspective, as the goal perspective captures both functional and non-functional characteristics

of the system. While this is a recommendation to prevent modellers from using similar

perspectives (which would result in a large amount of similarity between the identified features

also possibly overlapped and redundant features), it is not a strict rule. Modellers may choose to

arbitrary combine perspectives if it serves their needs (e.g., if a hybrid requirements

engineering method is used to define requirements).

Chapter 6: The Feature Assembly Modelling Technique

90

Figure 6.3: Feature Assembly Perspective Selection Process

Chapter 6: The Feature Assembly Modelling Technique

91

6.5 Feature Assembly Modelling (FAM) Language

In this section, we present the Feature Assembly Modelling (FAM) language which

allows to model features within a single perspective, resulting into a feature (assembly) model.

The FAM language is the result of the study mentioned in chapter 5, it provides an answer to

our research questions RQ1.2, RQ1.4 and RQ1.5 (see section 1.4) by overcoming the

limitations mentioned in section 5.1 namely: limitations L1, difficulties in using the feature

modelling technique in practice; L2, ambiguity in modelling concepts; and L4, limited reuse

opportunities (section 5.1). For this purpose the FAM language was defined with limited

modelling constructs and simple semantics in order to keep the modelling process as simple as

possible (i.e. not doubts about which modelling construct to use). FAM uses a graphical

notation to represent features, their relations, and their dependencies. Figure 6.4 shows the

meta-model of the FAM language (using ORM notation). The basic construct is Feature; a

Product Line (or variable software in general) is made up of a set of Perspectives. Each

perspective represents a Feature Assembly Model and is of a certain perspective type (e.g.,

System, User, Functional, …) (modelled as Perspective Name). A perspective type can only be

used once for a certain Product Line. The feature assembly model of a perspective is made up

of a set of features. We will discuss the modelling constructs in more details in the next

sections. Note that an example elaborated with the FAM language will be given in chapter 8.

Figure 6.4: FAM Meta-Model

Chapter 6: The Feature Assembly Modelling Technique

92

6.5.1 Features

In the FAM language two types of features are distinguished, Feature and Abstract

Feature. Generally
34

, a feature that represents a concrete and well-defined logical or physical

unit or characteristic of the system will be referred to as “Concrete” Feature to distinguish it

from the other type, being Abstract Feature. A concrete feature may be further decomposed into

sub-features (in terms of concrete features or abstract features). A concrete feature is

represented by a solid line rectangle holding the feature’s name. An Abstract Feature is a

feature that is not concrete; rather it is a virtual feature that represents a generalization of some

features or a generalization of certain characteristics or capabilities. An abstract feature will, in

general, be associated with more specific features (concrete or abstract ones), of which it is a

generalization. An abstract feature is used to indicate variability, it acts as a variation point,

while the more specific features associated to it act as its variants. An abstract feature is

represented by a dotted line rectangle holding the abstract feature’s name. Figure 6.5 shows the

two feature notations.

To illustrate the difference between the

two types of features, consider the E-Shop

application. Features such as Shopping Basket,

Wish List, Order Process, and User Tracking are

all concrete features. The Order Process feature

can be further decomposed into Order

Fulfilment, Order Approval and Order

Transaction. Order Approval and Order Transaction are both concrete features, while Order

Fulfilment is an abstract feature. Indeed, order fulfilment is a generalization of two different

types of order fulfilment (i.e. variants), namely: electronic delivery and product shipping.

Therefore we define the Order Fulfilment feature is an abstract feature (i.e. a variation point)

with two specializations (i.e. variants) Electronic Delivery and Product Shipping. Another

example is found in a Quiz Product Line application. In this application, two types of operation

modes are available: quiz operation mode and exam operation mode. Therefore, the Operation

Mode feature is an abstract feature that can be further specified by two concrete features Quiz

and Exam.

It should be noted that the feature type as used in the FAM language (concrete vs.

abstract) is different from the feature type used in mainstream feature modelling. In mainstream

feature modelling, the feature type (i.e. mandatory, optional, AND, OR, and alternative) is used

to express how a feature contributes to the variability. However, because a feature can

contribute differently to variability in different situations, in FAM we do not associate such a

variability type with the feature itself. Rather, how a feature contributes to the variability of the

system is determined by the relations it has with other features. By doing so, reuse will be

easier (more on this in chapter 9). Possible types of relations are explained in the next section.

A feature has a set of meta-data (i.e. properties) associated to it; these properties are not

visualized in the model for the sake of readability but should be associated with the features
35

.

They are needed to complete the model and to facilitate information retrieval, model

modification, etc. at later stages. These properties are:

34

 A more specific definition exists based on the perspective the feature belongs to as already mentioned

in section 5.3.
35

 These properties are part of the Information model associated with the Feature Assembly Modeling

technique represented by the FAM Ontology presented in chapter 10.

Figure 6.5: FAM feature notations: (a) “Concrete”

Feature (b) Abstract Feature

Chapter 6: The Feature Assembly Modelling Technique

93

 Name: Each feature has a unique name within the perspective it belongs to. If two

features belonging to the same perspective have the same name then this means they

both represent the same feature, this criterion can be used to refer to the same feature in

partitions of a model when it is too large.

 Description: the description is a descriptive explanation of one or two lines of the

feature.

 Owner: The person that defined the feature; this is important to know in case of

changes.

 Stakeholders: The persons that deal in some way with the feature (e.g., used it, have

an interest in the feature, …). For the sake of decision making it may be important to

know for which stakeholders this feature matters. It may be necessary to distinguish

between different types of stakeholders, however for the sake of simplicity we will not

consider this here.

 Keywords: one or more keywords or tags may be associated to the feature as an index

term or descriptor for later retrieval. The keywords associated to the feature should not

be overloaded but should act as terms that captures the essence of the feature.

 Binding Time: The decision about the features included in the final product may occur

at different stages in the development (e.g., design time, compile time, run time).

Therefore, for a variation point (i.e. an abstract feature and a concrete feature with an

optional composition relation) the binding time identifies the time at which this

decision is taken.

 Standalone: this property indicates whether the feature is consolidated enough to be

used “as it is”, i.e. independent of any other features. For example, features such as

Shopping Basket, Spelling Check and Equation Editor could be reused independent of

other features. It is important to strive for as much independency as possible because

this will support feature reusability; standalone features are good candidates for being

reused (more on this issue in chapter 9).

Furthermore, the name of the feature in combination with its perspective identifies the

feature. The dot operator is used to define this full identifier of the feature. For example, a

feature Questions belonging to the System perspective can be referred to as System

Perspective.Questions.

6.5.2 Feature Relations

In FAM, we only use two types of feature relations: composition relation and

generalization/specification relation. The distinction between these two feature relations is

made to prevent ambiguities resulting from mixing feature compositions and variability

compositions (please refer to section 5.1.2 for examples). We also restrict the possible types of

relations depending on the type of the feature.

 Feature Composition

The composition relation is used to express a whole-part relation; i.e. a feature is

composed of one or more fine-grained features. Composition relations are only supported for

concrete features. The composition relation is either mandatory or optional.

Chapter 6: The Feature Assembly Modelling Technique

94

A mandatory decomposition relation indicates a

compulsory whole-part relation, i.e. the sub-feature

must be part of all products derived from the

model. An optional composition relation indicates

an elective whole-part relation, i.e. the sub-feature

may exist in some products derived from the

model. A composition relation is graphically

represented by a line with a diamond edge, the

diamond points being at the composing feature (i.e.

the whole). The line is a solid line for a mandatory

composition relation (see figure 6.6(a)) and a

dotted line for an optional composition relation (see

figure 6.6(b)). Note that the part feature could

either be a concrete feature or an abstract feature.

 Feature Specification

The generalization/specification relation is

only allowed for abstract features. As already

explained, an abstract feature is a generalization of

some other features and the

generalization/specification relation is used to specify of which (specific) features the abstract

feature is a generalization. In general, it is used to express a situation in which there is a need to

distinguish a feature from the different possibilities or variants that it may have. The different

option features (i.e. the specializations) of the abstract feature identify possible variants of that

feature. In terms of variability, an abstract feature represents a variation point and the option

features associated with it represent its variants. An option feature (variant) can either be a

concrete feature or an abstract feature. The number of variant features allowed to be selected in

a certain product is expressed via a cardinality constraint.

 The cardinality

constraint specifies the

minimum and maximum

number of features allowed to

be selected in a valid product

configuration, provided that the

abstract feature is selected in the

configuration. The notation

used is “minimum: maximum”.

A dash (“-") is used to specify

“any”, which means that there is

no limitation on the maximum

number of variants that can be selected. The minimum cardinality should be greater or equal to

one, while the maximum cardinality could be any integer between one and the maximum

number of variant features. If only one variant should be selected then both the maximum

cardinality and minimum cardinality should be set to 1 (equivalent to the alternative feature

group in FODA). Moreover, a minimum cardinality set to one means that the abstract feature

will be bound to one of its option features if it is selected in the product configuration. Note that

the selection of the abstract feature itself is based on the type of feature relation it has with its

parent feature (if any).

Figure 6.7 shows the FAM (visual) representation for the Order Process feature

described in the previous section. The Order Process feature is a concrete feature that is

Figure 6.6: FAM feature notations (a) Mandatory

Composition, (b) Optional Composition, (c)

Generalization/Specification

Figure 6.7: FAM representation of the E-Shop’s Order Process feature

Chapter 6: The Feature Assembly Modelling Technique

95

mandatory composed of a Transaction Feature and a Fulfilment feature; furthermore, it is

optionally composed of an Approval feature. There are two types of fulfilment: shipping and

electronic delivery; therefore the Fulfilment feature is an abstract feature that has two option

features: Shipping feature and Electronic Delivery feature, both features are concrete. The

Fulfilment feature is associated with a cardinality of minimum 1 and maximum 1.

6.5.3 Feature Dependencies

As already mentioned, feature dependencies capture and represent feature interactions,

i.e. a feature dependency specifies how a feature may affect other feature(s). We argue (based

on our study in section 5.2.1) that there is a need for expressive feature dependencies in which

the reason for why the dependency holds is not lost. In the Feature Assembly modelling

technique, feature dependencies are binary relations that allow expressing dependencies

between features. We stick to binary relations because they are easier to grasp and understand

than n-ary relations. On the other hand, n-ary relations may be more powerful. However they

are more difficult to express by an average modeller, and could easily result into “non-

elementary” n-aries, containing unnecessary information or redundant information. For

example in the E-Shop application (figure 6.7), the dependency: Electronic Delivery

requires Approval AND (NOT Shipping) is valid; yet since Shipping and Electronic delivery

are alternatives, this dependency can actually be reduced to the following feature dependencies:

Electronic Delivery requires Approval. Therefore, while n-ary feature dependencies

might seems like a flexible nice-to-have utility, they increase the complexity of the resulted

models and call for an additional step to “normalize” these feature dependencies. In order to

keep our feature assembly models simple, we opt for the simplicity of the binary dependencies.

A feature dependency specifies how a feature may affect other feature(s). As already

mentioned this could be due to a marketing requirement, business requirement, and domain

constraint. Dependencies can be expressed between features from a single perspective as well

as between features from different perspectives. As already mentioned in section 5.4, if there is

a need to link together two perspectives, such a link is achieved by means of feature

dependencies connecting features belonging to the different perspectives. We will explain

below these two types of dependencies.

6.5.3.1 Feature dependencies within the same perspective

We have extended the set of feature dependencies defined in FODA
36

 (requires and

exclude) to more types of dependencies to better enable the modelling of feature interactions.

Additionally, we found that although from a configuration point of view the need for specifying

feature dependencies boils down to specify if, in a valid composition, a feature needs to be

selected (e.g. requires dependency) or should not be selected (e.g. excludes dependency), from

a modelling point of view the purpose of why the feature should be selected (or likewise

deselected) is as important. Understanding why a feature requires or cannot be combined with

another feature has great implications on the understanding of the overall systems and therefore

will be useful for different kinds of decisions. Furthermore, this information may also be

essential in the case of change or future evolution for the system (e.g. if is based on domain

constraints, technical difficulties, or marketing preferences). Therefore we associate each

feature dependency with a Reason which holds a textual description for the purpose of the

36

 For more details please refer to chapter 2.

Chapter 6: The Feature Assembly Modelling Technique

96

dependency. Additionally, like for features, it may be interesting to know who identified this

dependency, therefore we add an Owner property to each feature dependency.

A feature dependency takes the form: Feature_A <feature dependency type>

Feature_B. Dependencies among features of the same perspective are called inter-perspective

dependencies. Listing 6.1 shows the graphical representation and the associated semantics of

the feature dependencies supported by FAM. The feature dependencies can be specified in the

feature model graphically by connecting the relevant features with a line containing the

graphical notation of the dependency (examples are shown in chapter 8) or using a text form.

Feature A excludes Feature B indicates that Feature A and Feature B cannot occur
together (are mutual exclusive) in a valid product. As an example, Maximum
Graphics excludes Maximum Performance; Single Licence excludes Multiple Choice

Questions.
Excludes

 Feature A requires Feature B indicates that Feature A is dependent on Feature B,
and likewise Feature B is dependent on Feature A; so A requires B is the same as B
requires A. In terms of configuration, the Requires dependency implies that if
feature A is selected in a valid configuration then feature B must also be selected

and the other way around. As an example, Advanced Editor requires Spelling
Checker.

Requires

Feature A uses Feature B indicates that feature B is required for feature A to
achieve its service or capability; i.e. Feature A needs Feature B for some of its
functionality. This is an asymmetric property (thus the arrow is the symbol), so
Feature A uses Feature B does not imply Feature B uses Feature A. While in a valid
configuration the selection of Feature A triggers the selection of Feature B, the
existence of Feature B does not imply the existence of Feature A. As an example
Search uses Display Products.

Uses

Feature A same Feature B indicates that the two features are the same. This
dependency is particularly important in the case of very large feature assembly
models of which parts were developed independently; the same dependency allows
gluing them. The “same” dependency can be considered as a merge operator that
enables merging perspectives based on their common features.

Same

Listing 6.1: FAM Feature Dependencies, notations and semantics.

Following the semantics given in listing 6.1, we see that some of the feature

dependencies are symmetric: excludes, same, and requires. This implies that the direction of the

dependency is not significant, and therefore no direction is associated with their graphical

representation. The uses feature dependency is asymmetric thus a direction (i.e. arrow) is

associated with the graphical representation of it. Furthermore, the feature dependencies:

requires, and uses are transitive properties, i.e. if Feature A requires Feature B, and Feature B

requires Features C, then Feature A requires Feature C.

6.5.3.2 Feature dependencies between different perspectives

As already explained, in FAM a perspective oriented abstraction mechanism is used

while modelling, yet perspectives are not independent. Features belonging to different

perspectives may be dependent. It is often the case that a feature in one perspective constrains

Chapter 6: The Feature Assembly Modelling Technique

97

another feature belonging to a different perspective. Dependencies among features of different

perspectives are called intra-perspective dependencies. For intra-perspective dependencies we

support the same set of dependencies as for inter-perspective dependencies (excludes, same,

requires, uses). The form of an intra-perspective dependency is:

<Perspective.feature><feature dependency type><Perspective.feature>, where <feature

dependency type> is one of the keywords: excludes, same, requires, uses. Here a feature must

be identified by both the name of its perspective and its feature name. An example intra-

perspective dependency representing interdependencies in the E-Shop application is:

Functional.Promotion requires User_Interface.Discount, which states that supporting the

Promotion (functional) feature requires having the Discount feature in the user interface.

Similarly User_Interface.Discount uses Functional.Discount_Rate, states a uses dependency

between the user-interface perspective and the functional perspective. Intra-perspective

dependencies are also associated with a Reason and an Owner properties so that the rationale of

the dependency is not lost.

6.5.4 FAM Formal Specification

In this section we

present a formal

specification of the Feature

Assembly Modelling

Language. According to

[Harel and Rumpe, 2004] a

modelling language

consists of an abstract

syntax (L), which defines the allowed constructs by the language (the symbols and their

formulation rules); and semantics (S) which describe the meaning of the language constructs,

such that (as represented by figure 6.9). We build on top of this and define the

syntactic language LFAM which represents the Feature Assembly Modelling Language, and

provide the semantics by means of the mapping MFAM ; i.e. . We describe

each in more details below.

6.5.4.1 FAM Syntax

As already shown in the previous sections, FAM is a visual modelling language (i.e.

has a visual notation). Feature Assembly models are therefore diagrams which represent

graphs. Following the definition of Erwig [1998] for a visual language, a visual language LFAM

over an alphabet A consists of a set of symbols of A that are, in general, related by several

relationships {r1, …, rn} = R. Thus we can say that a diagram d is given by a pair (s, r) where

 is the set of allowed symbols of the diagram, and gives the

relationships that hold in d. In other words, d is nothing but a directed graph with edge labels

drawn from R, and a visual language is simply a set of such graphs. Language semantics

definitions are often based on so-called abstract syntax which defines a language on a more

abstract level and can safely ignore all aspects that are not needed within the semantics

definition [Erwig 1998]. That is why we can abstract from the choice of icons or symbols and

from geometric details such as size and position of objects (language symbolic notation are

given is sections 6.5.1, 6.5.2 and 6.5.3). Therefore, in this section we only restrict ourselves to

the abstract syntax defining the Feature Assembly modelling constructs, i.e. the language LFAM.

We first start by defining the set of allowed symbols s in the diagram, and the set of

allowed relations r.

Figure 6.8: Semantic Definition of a Modelling Language, after [Grönniger et

al., 2009]

M

Chapter 6: The Feature Assembly Modelling Technique

98

Definition 1: Language Symbols

The alphabet of valid symbols of the language consists of:

(1) A non-empty finite set of feature symbols, i.e. nodes of the diagram.

 = { , … }.
The set Features is partitioned into two disjoint sets and

 :

 =

(2) For each feature , there is a constant symbol ,
 , ; i.e. for each set of features

{ , , … , } there exists a corresponding set of feature names
{ , , , }. To refer to the name of a feature
 , we use the notation .

(3) A non-empty finite set of perspective names .
 = { , , , }, .

(4) A non-empty finite set of product line names .

 = { , , , }, .

(5) The set which is a set of ordered pairs, such that

 = { , ,… , , }, where
 , ({ - }), iff

The cardinality pairs will be used to identify the minimum and maximum cardinality

allowed for an abstract feature.

☐

The language relations refer to the set of possible relationship between the features;

these include feature relations (composition relation and specification relation) and feature

dependencies. This is defined as follows.

Definition 2: Language Relations

(1) A relation is a binary relation that links concrete features to their

sub-features. There are two types of compositions: mandatory composition, and

optional composition, therefore is partitioned into two disjoint sets

 and .

 =

 where,

 = { , , }

Chapter 6: The Feature Assembly Modelling Technique

99

(2) A relation is a ternary relation that links abstract features to their

list of (option) features and associating this with the cardinality of this

specification.

 = { , { , , … }, ,
{ , , … } , { , , … } , = , ,
 , ;

(3) A relation is ternary relation that expresses a dependency between

two features. Each dependency has a type and is a directed edge, i.e. an edge

between a source feature (sf) and a target feature (tf), where sf tf .

 = { , , , ,
 , }

DType is the finite set that represents the valid dependency types. It is partitioned

to two disjoint sets: ADType, which represents the asymmetric dependency types

and SDType which represents the symmetric dependency types

 = = { } =
{ , , }

We further require that for each tuple , , there is at most one
dependency .

☐

Next, we define the set of syntactic rules (i.e. formulation rules) that cover the

construction of well-formed feature assembly models and perspectives, as follows.

Definition 3: Feature Assembly Model

A Feature Assembly Model fam is a tuple:

 = ,

where,

(1) , F

(2) = , ,

 Where

 ,

 ,

Chapter 6: The Feature Assembly Modelling Technique

100

To refer to the features of a Feature Assembly Model , we use the

notation ; to refer to the composition relations, specification relations, and

dependency relations of the Feature Assembly Model , we use the

notations , , respectively.

☐

A perspective corresponds with a feature assembly model; i.e. it is defined by a feature

assembly model. Therefore a perspective is defined as a Feature Assembly Model together with

the name of the perspective.

Definition 4: Perspective

A perspective Perspective is a tuple:

 = ,

where,

(1) is a Feature Assembly model

(2)

To refer to the name of a perspective, we use the notation and

to refer to the Feature Assembly Model of the perspective, we use the

notation .
☐

A product line consists of a set of feature assembly models, one for each perspective,

together with the name of the perspective.

Definition 5: Product Line

A product line is a tuple:

 = , { , … , }

where,

(1)

(2) is a perspective.

(3) { , … , },

{ , … , } ,

 ()

(4) { , … , } , ,

 , i ()

The set { , … , } contains all perspectives used for

product line

☐

Chapter 6: The Feature Assembly Modelling Technique

101

6.5.4.2 FAM Formal Semantics

The semantics (i.e. interpretation) of our language constructs is given in terms of

configurations.

The ultimate purpose of a Feature Assembly model is to understand the available

variable features that a product line could hold, in order to guide how products can be

composed (i.e. configured) from the defined product line. Therefore, it actually represents a

constrain problem of which its possible solutions represent valid products.

We will first define the configuration for a Feature Assembly Model, next the

configuration of a Product Line.

Definition 6: Configuration of a Feature Assembly Model

A configuration for a feature assembly model = , = , , ,

Conf, is a subset of features, Conf F , on which the following rules hold:

(1)

(2) and (,)

then

(3) and , = { , , , } ,

 { }, (,
 ,)

then

(4) an (,) an (,)

then

(5) an = { , , , } = ,
 ,

 ,

 then an an

(6) an (, ,) (, ,)

then

Chapter 6: The Feature Assembly Modelling Technique

102

(7) an (, ,) (, ,)

 then

(8) an (, ,) (, ,)

 then

(9) an (, ,)

then

☐

A configuration for a product line may be derived from the configurations of the

Feature Assembly Models of each perspective defined for the software product line. The

configuration can be defined as the union of the configurations of the different feature assembly

models fam.

Definition 7: Configuration of a Product Line

Let = , { , ,… , , } be a product line.

Let Conf1 … Confn be configurations of the feature assembly models { , … , }, then

a configuration Conf for PL is defined as follows:

 = …

☐

Variability Notations

Next we provide the syntax and semantics of the variability notations, i.e. variation

points and variants as follows:

(1) represents a non-empty finite set of variation points, i.e. nodes

that denote variability in the diagram,

 = { , … }.

(2) represents a non-empty finite set of variations, i.e. nodes that denote

variations in the diagram,

 = { , … }.

Definition 8: Variation Points and Variants

(1) , , , , = { , , , } ,
 ,

Chapter 6: The Feature Assembly Modelling Technique

103

then , and ,

(2) , ,
 ,

 then

☐

6.6 Discussion

In this chapter, we explained the FAM approach. Compared to the mainstream feature

modelling techniques (mentioned in chapter 5), we have introduced an abstraction mechanism

based on perspectives to deal with the cognitive difficulty of modelling large and complex

systems, and we tried to overcome the limitations of the mainstream feature modelling

techniques by limiting the number of modelling concepts and by having a rigorous separation

between composition and variability. We discuss these two contributions in more detail by

comparing them to existing solutions.

1. Perspectives as Abstraction Mechanism

As already mentioned, separation of concerns improves the design of complex and large

systems. One of the concerns for Feature Assembly Modelling was to support variability

and commonality modelling of large and complex systems (RQ1.1, and RQ1.3). FAM uses

a perspective-based approach to separate concerns and allow in this way to focus on one

aspect at the time. Furthermore, the intra-perspective dependencies allow linking the

different perspectives. In addition, the modeller may opt for an arbitrary number of

perspectives. This is opposed to the technique of categorizing features adopted in FODA

(which groups features using predefined categories - see section 5.1.4 for more

information). First of all, it is not always easy to decide on the category of a feature, and

secondly, it is not an abstraction mechanism but rather a grouping mechanism with a fixed

number of groups, which may make it hard to decide to which group a feature belongs.

Figure 6.9 and figure 6.10 illustrate the difference between the two approaches using the

Private Branch Exchange (PBX) system [Kang et al., 2002].

Using FODA (shown in figure 6.9), one model is created to represent the overall

system. Such a model can be very difficult to create when the number of features is large

and may become difficult to understand. A predefined fixed set of categories (also called

layers) is used to capture the different types of features of the system. Features are grouped

together by means of the following predefined set of categories: capabilities, operating

environments, domain technology, and implementation techniques. Features are related

using the “implemented by” dependency. A feature belongs to only one category, as shown

in figure 6.9.

Chapter 6: The Feature Assembly Modelling Technique

104

Figure 6.9 FODA model of PBX problem

Using FAM (shown in figure 6.10), different models are used to model the system

from the viewpoints of the different capabilities of the system. Here we opted for a System

Perspective, a Hardware Interface Perspective, a Functional Perspective, and a Non-

Functional Perspective. For each perspective, separate feature models are created to model

the variability and commonality of features that represent the capabilities of the application

from that specific point of view (note that features common between two or more

perspectives are shaded).

While we have four perspectives in FAM, the feature models in these perspectives

are small and as such easier to understand, and easier to create as one only has to focus on

one aspect of the system at a time. All feature in a perspective also server the same

purpose; this comes from the fact that in FAM “what is a feature?” is answered based on

the purpose of the perspective the feature is part of. Therefore using perspectives as an

abstraction mechanism also reduces the difficulties of using the feature modelling

technique in practice by providing clear guidelines for what could be a feature and what not

(see section 5.1, limitation L1.1, L1.2)

Chapter 6: The Feature Assembly Modelling Technique

105

Figure 6.10 FAM model of PBX problem

2. Well-defined Modelling Semantics

Another concern for FAM was to alleviate the feature Modelling practice (this is

related to our research questions RQ1.2. RQ1.4, RQ1.3), we addressed this concern by dealing

with the limitations of mainstream feature modelling techniques mentioned in section 5.1

(limitation L2 and L4). The FAM language uses modelling concepts and notations that reduce

the creation of ambiguous models (Limitation L2, please refer to section 5.1.2 for more details).

By introducing Abstract Features to capture variability (variation points), practitioners are

forced to make all information explicit in their models. Figure 6.11 demonstrates this; figure

6.11.a provides the FODA representation of the Graph Product Line problem (GPL)

(introduced by [Lopez-Herrejon et. Batory, 2001]), figure 6.11.b provides the FAM

Representation of GPL. In Figure 6.11.a, the feature Graph Type is mandatory, but it is not

clear whether one has to select an alternative feature from only one of the alternative feature

groups (Directed-Undirected) and (Weighted, Unweighted) or one has to select an alternative

feature from each of these groups. This ambiguity comes from the fact that in mainstream

feature modelling techniques there is no distinction between decomposition and specification

relations. Thus the Graph Type feature (in figure 6.11.a) is decomposed into two sets of

specification branches (feature groups). This representation is not possible in FAM. In FAM

there is a distinction between features that can be decomposed and features that can be further

specified, combining the two is not possible. Therefore to model the GPL problem presented in

Chapter 6: The Feature Assembly Modelling Technique

106

figure 6.11.a in FAM, there is a need to explicitly introduce new features that represent the

information that was implicit in the feature model of figure 6.11.a. This resolves the previously

mentioned ambiguity of the GPL in figure 6.11.a. In the FAM representation of the GPL,

shown in figure 6.11.b, the Graph Type feature is characterized (via a specification relation)

into Direction and Weight features. This specification is associated with the cardinality of

minimum 1 and a maximum of any. The Direction feature has two specifications (Directed-

Undirected), associated with the cardinality of minimum 1 and maximum 1 (i.e. equivalent to

an alternative relationship). The Weight feature has two specifications (Weighted, Unweighted)

associated with the cardinality of minimum 1 and maximum 1.

→

(a) (b)

Figure 6.11 (a) FODA Representation of the GPL (b) FAM Representation of GPL

In addition, by explicitly distinguishing between composition relations and

specialization relations, the modelling constructs cannot be overloaded, and therefore we avoid

the need for normalization and avoiding the redundancy caused by allowing both singleton

relations (optional and mandatory) and group relations (e.g. AND, OR, and alternative) (please

refer to section 5.1.2).

Another advantage of distinguishing between concrete features (which can only

participate in composition relations) and abstract features (which can only participate in

specialization relations) is that it frees a feature from the information of how it contributes to

variability allowing to easily reuse the feature with different variability requirements thus

supporting feature (and feature model) reuse. Figure 6.12 demonstrates this; figure 6.12.a

shows the FODA feature model for a Payment feature, which has two alternative features Bank

Transfer and PayPal, the equivalent in FAM is shown in figure 6.12.c, Payment is represented

as an abstract feature which has two option features Bank Transfer and PayPal, associated with

a cardinality of maximum and minimum of 1 (i.e. equivalent to the alternative variability of

FODA). In successive product lines the Payment feature needs to be extended with other

payment methods, e.g., Visa, Mastercard, and Bancontact/Mister Cash, as shown in figure

6.12.b. Furthermore, suppose that the Bank Transfer feature needs to become mandatory to suit

all markets while there is a need to select one or more of the other payment features (OR

Features). Such a change requires deleting the old Alternative Feature group, creating a new

OR group, and changing the type of the Bank Transfer feature to mandatory, the result
37

 is

shown in figure 6.12.b. In FAM this is a simpler process as shown in figure 6.12.d, the new

37

 Note that adding and removing branches in the feature model tree may not always be a straightforward

task in current tools (e.g., it may need backtracking and reconstruction of more than one branch or even

level)

Chapter 6: The Feature Assembly Modelling Technique

107

payment methods are added as new options for the Payment feature, the cardinality is changed

to a minimum of 1 and a maximum of any to suit the new situation. The need for the Bank

Transfer feature to become mandatory is actually a constraint rather than an intrinsic fact of the

domain, therefore this is modelled using the feature dependency relation “Payment requires

Bank Transfer”, as shown in figure 6.12.d. This example shows that FAM supports managing

change in existing feature models as well as supporting reuse of features (more on FAM’s

support for reuse is given in chapter 9)

Figure 6.12 Support for changes and feature reuse a comparison between FODA and Feature Assembly Modelling

6.7 Summary

In this chapter, we presented one of the main contributions of this thesis, the Feature

Assembly Modelling (FAM) technique. To guide the modellers, we have presented some

guidelines for analysing variability and identifying variable features, i.e. features that indicate

variability. Next, we have presented the multi-perspective approach and the FAM language that

allows creating feature assembly models within the different perspectives specified.

We have supported modelling with abstraction by using a multi-perspective approach

for feature modelling. Perspectives act as abstraction mechanism enabling separation of

concerns when modelling. Adopting a perspective-based approach for defining features allows

identifying the features that are relevant for a particular aspect or viewpoint, thus acting as an

abstraction mechanism that helps dealing with complexity. Furthermore, dealing with one

concern at a time allows for better scalability in the case of very large systems. We have also

presented guidelines for how features can be identified in the different perspectives. We

provided these guidelines for the most common perspectives; the same principles apply for any

perspective that may be useful for modelling the system. Furthermore, by expressing

dependencies between features of the different perspectives, the different perspectives are

interconnected, which provide a more complete picture of the system modelled.

The FAM language overcomes some of the limitations of the mainstream feature

modelling techniques. In FAM, we have reduced the number of modelling primitives used and

Chapter 6: The Feature Assembly Modelling Technique

108

more importantly the specification of the information about the variability is separated from the

definition of the features, which improves reusability. We have also provided a link between

variability concepts (i.e. variation points and variants) and the modelling constructs so that

anticipating variability from the created feature models is a straightforward process. We show

how features can be related to each other in terms of feature-to-feature dependencies. We

defined a set of feature-to-feature dependencies that can be used for features of the same

perspective as well as for features of different perspectives (i.e. intra-perspective

dependencies). Intra-perspective dependencies allow putting all the perspectives together in

order to obtain the complete picture of the system. We concluded the chapter with providing

examples to demonstrate how FAM has overcome the limitations of the mainstream feature

modelling techniques that were mentioned in the previous chapter.

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

109

Chapter 7

Feature Assembly Modelling For Data

Intensive Applications

Data intensive applications are applications that manipulate a large amount of

persistent
38

 data. In general, the data intensive applications provide an interface by which users

can manipulate the underlying data, but it is also possible that the data is only for internal use

by the application. For developing efficient data intensive applications an alignment between

the application’s functionality and the data on which it operates is required. In some cases,

more than one application share access to common data entities, yet these different applications

do not necessarily share the same view on these data entities. Therefore, in data intensive

applications, an adjustment between the data and the application(s) responsible for

manipulating this data is required. For efficiency purposes (e.g., if the data is shipped with the

application, or the database is distributed) as well as for security (the application should only

access the portion of the data that it is authorized to operate on), it may be required that the

application only has access to the data entities that it actually needs, this is usually achieved via

materialized views and/or virtual views [Garcia-Molina et al, 2008]. Design decisions about

which entities should be part of which view, should be made to optimize the performance and

reusability of the data intensive applications.

In the case of introducing variability to data intensive software applications, the

alignment between the application (in this case a member of the product line) and the data is

even more crucial. Members of the product line vary in the features (i.e. capabilities and

characteristics) that each product provides and different features may be associated with

different parts of the persistent data processed, generated, or accessed by the application. So,

different combinations of features may trigger different combinations of data entities.

Therefore, in the case of variable software, it should be possible to provide variability at the

data level in order to have a correspondence between the variable application and the database

schema. Different features selected for the final product may imply different views or even a

different database scheme. Therefore, for each possible product it should be possible to tailor

an adequate database view (physical or virtual) that provides only the data entities that are

needed for the features used within a specific product. That is, as the product line is configured

to provide a set of valid products the data schema should also be configurable. For example in

an E-shop application, a shop that does not support a Wish List should not have the Wish List

data entity as part of its database.

38

 Generally speaking, the persistent data could be held in a relational database, an object oriented

database, an XML file, or in a lightweight tailored DBMS (e.g., in the case of embedded devices).

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

110

To realize this, we define the concept of a variable data schema. A variable data

schema is a data schema that holds optional data entities that may or may not be partially or

fully included in a product’s final data schema. A variable data schema also contains variability

annotations that annotate database entities with variability information (see section 6.3).

In a certain product derived from a product line, existence or absence of features

accordingly motivates the selection or absence of related persistent data entities. Yet the

process is not straightforward, as it implies injecting knowledge about the applications

variability into the database design stage. Moreover, it also implies providing traceability links

to document how features relate to database entities. To be able to achieve this, variability

modelling needs to be extended to support persistent variable data modelling. Therefore, there

is a need to support the following tasks: 1) the link between persistent data entities and

application features should be expressed explicitly; 2) the database entities should be designed

in such a way that these variable schema entities can be selected/deselected in a flexible

manner.

To achieve this, the Feature Assembly Modelling technique has introduced the

persistent perspective which allows identifying features that have a persistent nature and allows

modelling their variability. The persistent perspective is an intermediate link between the

database model and the application’s (variable) features. In the coming sections we explain

how features are modelled in the persistent perspective. Next, we explain how to maintain the

link between Feature Assembly models and the data models, in order to take into consideration

variability information in the process of database design.

7.1 The Persistent Perspective

To allow modelling variable data intensive applications (or product lines) using the

Feature Assembly Modelling technique a Persistent perspective is defined. The Persistent

perspective holds features that have a persistent presence in the application. These persistent

features capture the persistent data in the other perspectives of the application. Features in the

Persistent perspective are linked to features in other perspectives (e.g., System perspective,

Functional perspective, etc.).

It must be noted that the Persistent perspective is not a conceptual model of the data

used by the application. Rather it is a variability model of features representing data concepts

(and thus the data entities that exist within the application). However, it is incapable of

representing a complete conceptual schema of the underlying database because it lacks the

notion of relation, which is essential to express how the different data concepts are related.

Being a conceptual variability modelling technique, Feature Assembly models are not suitable

for data modelling. Therefore, the variability knowledge contained in the Feature Assembly

model should still be linked to the conceptual models created during data modelling
39

.

For example, in the E-Shop application, a Purchase Order feature is defined in the

System perspective because it represents a key feature in such an application. Additionally, a

Purchase Order feature should also be represented in the Persistent perspective because the

information about a purchase order should be persistent
40

. This also implies that the

corresponding data model should hold a Purchase Order entity that represents the purchases

39

 This could be done using a data modelling technique such as EER or ORM, in this thesis we illustrate

the use of EER to create a variable schema.
40

 Persistent could refer to any type of persistency, e.g., file or database. In this chapter, we will use

persistent to refer to database persistency.

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

111

made by a certain user at a certain moment (timestamp). Like in the other perspectives, features

in the persistent perspective should be organized in a Feature Assembly Model(s) to represent

the variability of the different persistent features. As such, it also indicates the required

variability in the underlying resulting schema.

7.1.1 Defining the Persistent Perspective

The Persistent perspective holds features that denote persistent data. Such a feature

represents a feature (or concept) within the application that has a persistence nature, e.g., is

stored in the database. A feature in the persistent perspective is defined as:

Definition 7.1 (Persistent Perspective Feature)

 A Persistent perspective feature is a feature that has a persistent presence in the
application.

 It should be noted that the level of detail in the Feature Assembly Models of the

Persistent perspective depends on the level of variability in the corresponding product line. For

example, in a product line that targets many users with different roles and at different localities,

the same information may be named differently based on the context (i.e. function and user

role) and on the locality (i.e. the same terms may have different names). This variability should

be indicated in the features defined within the Persistent perspective. The Persistent perspective

represents features that directly manipulate concepts stored in the database. It is important to

note that features defined in the Persistent perspective should contribute to the variability of the

overall application.

The features of the Persistent perspective are motivated by the persistence nature of

application features, and therefore they stem from features within the different other

perspectives of the applications (e.g., System perspective, Functional perspective, Users

perspective, Non-functional perspective). The features of the Persistent perspective are based

on all the other features that exist in the other perspectives defined for the product line.

Therefore, the Persistent perspective should be defined after the features of the product line

have been identified and analysed for completeness. In addition, features of the Persistent

perspective will hold a strong relation with features defined in these perspectives, i.e. expressed

by means of feature dependencies. We define the following methodology for identifying and

defining features that should belong to the Persistent perspective.

1. Identify in the System perspective the features that represent or require persistent

information. For these features it will be necessary to introduce corresponding features

into the Persistent perspective. For example in the E-Shop application, in the System

perspective some features are directly concerned with persistent information such as

the features Product, and Product Category. While others indicate the need for

persistent features because they manipulate persistent data, for example the Shipping

Order feature indicates the shipping information about a certain Purchase Order of a

certain user. From this we can derive the need for a supporting feature in the Persistent

perspective, i.e. a User feature. Additionally, it also indicates the need for a Persistent

Purchase Order feature.

2. Define composition relations between the persistent features to define how they

relate to each other from a compositional point of view. Also define the nature of these

compositions, i.e. mandatory or optional. As already mentioned, a mandatory

composition means that the sub-feature is an indivisible part of the parent feature;

while an optional composition means that the sub-feature is complementary to the

parent feature.

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

112

3. Investigate the need to introduce or distinguish between abstract and concrete

features. A persistent feature may be a generalized concept that has several more

specific types; in this case this feature is defined as an (persistent) abstract feature. The

more specific variants of that concept are represented as (persistent) option features;

they are linked to the more general concept in terms of a generalization/specification

relation. Next, define the cardinality rules that govern the maximum and minimum

number of option features that should be selected in a valid product configuration.

4. Define the feature dependencies that relate the features in the Persistent perspective

to features in the System perspective

5. Repeat steps 1 to 3 for all perspectives (Functional perspective, Users perspective,

etc.) to extract and define all persistent features. In each iteration, go through steps 2

and 4 to extend the feature model defined so far with additional features derived from

the other perspectives, and with additional feature dependencies.

7.1.2 Refine the Persistent Perspective

As mentioned before, the main reason for defining a Persistent perspective is to enable

a better understanding of the variability of the system/product line and how that affects the

persistent data associated with the different product line instances. The features defined in the

Persistent perspective in addition to the feature-to-feature dependencies (between features of

the Persistent perspective and features of other perspectives) should be taken into account when

defining variability in the database schema. Furthermore the Persistent perspective should help

tie together the functionality of the system with the persistent data manipulated and stored. Due

to the often-tangled relation between data and functionality, a refinement for the features

defined in the Persistent perspective is required, taking into account the features and

dependencies defined in the Feature Assembly models created in all perspectives. This

refinement is a two-step process:

1. Validate the consistency of the Persistent feature assembly model and the associated

inter-perspective dependencies and refine when necessary. This means verifying the

following:

a. Check if no persistent features are missing. This can be done by going through

the persistent concepts that need to be defined within the product line.

b. Check whether some features have the same semantics and actually represent

the same feature (this can occur because the features may originate from

different perspectives). In case there is a need for this duplication the “same”

dependency should be used to indicate that they are the same features. For

example, in the E-Shop product line, two features with the name Shopping

Basket may exist, one derived from the Functional perspective and the other

derived from the Graphical User Interface perspective. In each perspective, the

shopping basket has a persistent nature; therefore a persistent Shopping Basket

feature is defined for each. But actually, they both refer to the same

information and there is no need to duplicate the information and therefore

only one persistent feature Shopping Basket should be kept as part of the

persistent perspective.

c. Complete inter -dependencies between features.

d. Check whether no conflicts exist in the dependencies defined (more on this in

chapter 10).

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

113

2. Validate the feature-to-feature dependencies within the different perspectives (both

inter-dependencies and intra-dependencies) and refine when necessary. This means

verifying the following:

a. Complete the intra-dependencies between features of the different perspectives

and the Persistent perspective. For example, in the E-Shop product line it is

important to relate both the Shopping Basket feature from the Graphical User

Interface perspective and from the Functional perspective to the Shopping

Basket feature of the Persistent perspective via the following dependencies:

Functional.Shopping Basket same Persistent.Shopping Basket; Graphical User

Interface.Shopping Basket uses Persistent.Shopping Basket

b. Check whether no conflicts exist in the intra-dependencies defined.

A good Persistent perspective should contain all necessary persistent features that

features of all other perspectives need to manipulate. Once the Feature Assembly models are

defined, the next step is to use this information during the database modelling process in order

to obtain a variable database schema which is compatible with the different possible products

defined in the product line.

7.2 Linking Feature Assembly Models and Data Models

A conceptual data model is a database design that is independent of the implementation

of the actual database (i.e. RDBMS, performance issues, security issues, etc.). The Persistent

perspective provides a link between the features of the product line along with their variability

opportunities, and the (required or existing) underlying conceptual data schema. Table 7.1

shows the analogy between Feature Assembly Modelling concepts and conceptual data

modelling concepts. This analogy helps in defining a mapping between features and entities (in

EER modelling). It should be noted that variability could not only affect entities but also

attributes. Furthermore, two scenarios exist when defining the link between the data model and

the variability model. Firstly, it is possible that the data model is small and thus a centralized

data model can be used [Connolly and Begg, 2009]. In a centralized data design the data model

is defined in one design step, and as a result one global database model is defined. Different

views on the data can then be defined if required. Alternatively, it is possible that the data

model is large and multiple users are involved, in that case a decentralized database schema is

used based on the different user views [Connolly and Begg, 2009]. In the decentralized data

design, a data model is defined for each user view. In case a global data model is required, it

can be defined via a view integration process where the different segments of data design are

combined to create one global model. In either case the Feature Assembly models of the

Persistent perspective can be used to guide the data modelling to produce a variable data model

that is compatible with the different variability needs of the product line. We will discuss each

approach into more details in sections 7.2.1 and 7.2.2.

 Feature Assembly Model Data Model (EER)

Concepts Feature: a physical or logical unit that
acts as a building block for meeting the
specifications of the perspective it
belongs to

Entity: is any distinguishable object or
concept that is to be represented in the
database. It is the representation of a
'thing' in the real world.

 Attribute: represents a property or
some characteristic of the entity it
belongs to.

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

114

Assemblies Composition: A feature can be
composed of a set of sub-features
(mandatory composition or optional
composition)

Aggregation: an entity is characterized
by a set of attributes that represent
properties of this entity.

Generalization Abstract Feature: An abstract feature

that denotes a type or category of
features (its sub-features).

Generalized Entity: An entity that

combines general characteristics of a
group of entities.

Specification Option feature: defined by a variant
relationship.

Subtype defined by a is-a relationship.

Relations Dependencies: a dependency between
two or more features.

Relation: a relationship among two or
more entities (represents an
associative property; integrity
constraints are examples of possible
relations.)

Table 7.1: Relation between feature assembly model concepts and data modelling concepts

To specify the variability aspects, we have extended the EER model with annotations

that are used to mark the variability of the schema entities, attributes, and relations. To denote

variability of an entity or attribute, it is annotated with the annotation << variable>>, i.e. it is

dependent on the selection of a corresponding feature in the product line. To denote variability

due to generalization/specialization entities, we use the annotation <<variant>>. . The annotation

<< variant>> indicates entities that were derived from an option feature. A variable data concept

should be further annotated with information about its source of variability, i.e. the (variable)

features to which it is related. Two annotations are used to denote this link between the features

in the Feature Assembly models and data concepts in the data model, namely << maps_to>> and <<

relates_to>>. This allows traceability between the features and their corresponding data

concepts. Table 7.2 explains these annotations and their semantics. It should be noted that data

concepts could be related to any feature within any perspective.

Annotation Semantics
<< maps_to>> Identifies a one to one mapping between a feature assembly model concept (i.e.

feature) and a data model concept (i.e. entity or property). E.g.,

Persistent.Questions << maps_to>> Data_Model.Questions

Persistent.Passing_Score <<maps_to>>

Data_Model.Quiz.Passing_Score

<< relates_to>> Identifies a descriptive association relation between a Feature Assembly model
concept (i.e. feature) and a data model concept (i.e. entity or attribute). E.g.,

Functional.Question Category <<relates_to>> Data_Model.Category

Functional.Add Question Assessment <<relates_to>>

Data_Model.Assessment

Table 7.2: Annotations denoting relations between features and database concepts

7.2.1 Linking Features to Data Entities - The Centralized Data Model

Approach

In case of applications where the database users all share the same view on the

database, a centralized data model may be the best option. In this case, the only views required

on the data are the views derived for the different products of the product line. These views can

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

115

be physical views (i.e. the tables and properties are actually extracted from the global data

schema to meet the requirements of a certain product) or virtual views (i.e. views are saved in

the data schema).

To allow the design of a variable data schema (i.e. a schema that can be easily tailored

to meet the variability of the application), the following rules can be used during data

modelling:

1. Features in the Persistent perspective map to data entities in the data model.

a. Key features, i.e. features that represent a concrete concept or object, map to

entities. For example: Persistent.Products << maps_to>> a Products entity in the

data model.

b. Features expressing details of key features are mapped to attributes rather than

entities. For example Persistent.Price << maps_to>> the Price attribute of the

Product entity.

2. Persistent variation points, due to an optional compositional relation (part-of), trigger

variability in the underlying database schema. Those variant features are mapped to the

appropriate data concept (entity or attribute) and variability is indicated with the

<<variable>> annotation. For example, a Product feature can be optionally composed of

Product Details (e.g., image, weight, dimensions, colour, size, brand, etc.) in this case

the Product entity is linked to a variant composite entity named Product Details which

holds as attributes the details for a certain product. In this case, Product Details is

marked with the <<variable>> annotation to indicate this variability (it semantically

means that not each E-Shop has details associated with its products).

3. Persistent variant features (i.e. children of an abstract feature) should be mapped to

separate persistent concepts in the data model (i.e. entities). Each variant feature is

mapped to a separate entity. This ensures having a flexible schema in which not all the

(variant) entities need to be selected. The variable entities or attributes should be

marked with the << variant>> annotation. For example in the E-shop Persistent

perspective, there could be four different variants of Product: Consumer Products,

Application products, Services products, and E-Book products. Therefore, these four

variants features are mapped to four entities (each feature is represented by an entity);

each annotated with the <<variant>> annotation to indicate their variability.

A good variable schema design should take into account the need for separating

<<variable>> and <<variant>> concepts in order to have a schema that could be easily

customized for each possible product. For strong <<variable>> entities, this is easily achieved

by either selecting or deselecting the whole entity. For example, in the E-Shop product line, if a

certain product configuration will be using the E-Shop to sell Books and E-Books, then this

means that the corresponding schema will only have the entities that relate to the E-Book and

Consumer Products (in this case Book products). Weak <<variable>> entities often provide

additional information or more details about a certain strong entity. If a weak entity is selected,

its corresponding strong entity should also be selected. Variable attributes could also be easily

deselected if not used as an index or primary key. For example, in this E-Shop product, the

entity Product Details will also be used, selecting only the attributes that are suitable for books,

namely (image, weight, dimensions). Therefore for good variable schema design, <<variable>>

and <<variant>> properties should not be used as primary keys or indexes. A foreign key

relationship will also not be valid in the case that the <<variable>> or <<variant>> attribute is not

selected.

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

116

7.2.2 Linking Features to Data Entities - The Decentralized Data

Model Approach

In large systems, database modelling becomes a lengthy process in which there are

multiple needs from different users (or applications) interacting with the database. The

requirements of each should be identified and often a different user view is provided for each

database user (or group of users). This allows providing customized views to each user,

shielding him/her from the complete data model. View modelling is defined by Navathe and

Schkolnick [1979] as “the modelling of the usage and information structure of the real world

from the point of view of different users and/or applications”. It must be noted that these

different database users (or applications) are well identified during the data design and have

well known and fixed requirements. In large systems, it is actually the case that view design is

established as a first step towards obtaining a global
41

 data design. The design starts with

analysing each view from the point of view of its (database) users. View integration

methodologies are then applied to these segmented views in order to have a global schema

[Batini et al., 1986].

In the case of variable software, the different users of the database, which are in this

case the products that could be configured from the product line, are not known beforehand. In

variable software the variables are bound later in the design, deployment or even at runtime,

leaving open all possible valid configurations. Therefore, it should be possible to customize a

data schema at any time in the development process (production time, installation time, or

runtime, depending on when the binding of variables happens). Note that in this case there are

two different sets of views affecting the data model. Firstly the user views (i.e. the result of the

view modelling process) that is, different users see different portions of the data. Secondly, the

variability views (i.e. the result of the variability modelling process) that is, different variability

requirements imply different data requirements. The different user views will be reflected in the

variability view via defining the Users perspective. The Users perspective allows indicating the

availability of the different features for the users. In essence, variability may occur in each user

view; therefore it should be possible to combine the variability views with the user views for

each specific user (user-groups). This combination allows us to directly use the different

perspectives as a source for detecting persistent concepts that belong to each specific user-

group. User views are reflected in each perspective by the set of dependencies that are used to

relate the features within the perspective with the user group information that is modelled in the

Users perspective.

For each user view, variability information can be added to the entity relationship

models defined (similar to process described in the previous section). View integration

techniques could be used to obtain a global conceptual schema as explained in [Batini et al.,

1986].

In Chapter 8, the approach explained to use Feature Assembly modelling to define

variability in persistent data, will be demonstrated with an example. We also demonstrate the

process of identifying a variable schema.

41

 In distributed databases, a global data design is not required

Chapter 7: Feature Assembly Modelling For Data Intensive Applications

117

7.3 Summary

In this chapter, we have presented an approach for modelling data variability. The

introduction of variability in software development also has its impact on data intensive

applications. The option “one data schema fits all” is usually not a desired solution. The

variability introduced in data intensive applications should not only operate on the functional

side, but variability should also be introduced in the database schema. We call a data schema

where variability is introduced a variable data schema. A variable data schema is a schema that

can be easily tailored to meet the requirements of the different variants of the product line. It

should be noted that variability in the application triggers variability in the database. Therefore

it is important that there is a link between both.

The Feature Assembly Modelling technique can be used to model variability in

persistent data. A Persistent perspective is defined in which persistent features are defined

along with their relations to the features in the other perspectives. The persistent features can be

identified by inspecting the features in the other perspectives used for modelling the variability.

The goal is to identify and analyse the features that have a persistent nature and derive the

required persistent features from them. Next, we showed how the corresponding variable data

model could be defined from this persistent perspective. For this, we introduced the concept of

annotations into the data model to mark data entities and attributes with variability information.

118

Chapter 8: The Quiz Product Line Case

119

Chapter 8

The Quiz Product Line Case

In this chapter, we illustrate with a non-trivial example the use of the Feature Assembly

Modelling technique to model variable software, a Quiz Product line. The aim of is chapter is

to show in detail the process of modelling a complete example for an SPL. The example also

shows that the use of perspectives helps scaling down the complexity; it also helps in

identifying the features that make up the product line. The Quiz Product Line (QPL) is a family

of applications to create web-based interactive quizzes. The Quiz product line is a data centric

variable application that is mainly driven by the different capabilities of each individual Quiz

creation product. This example demonstrates the use of the Feature Assembly Modelling

technique in combination with a centralized data model approach (EER model). The presented

Quiz Product Line contains 246 features defined in four perspectives (System, Graphical User

Interface, Functional, and Users), and holds 45 different feature dependencies. By this non-

trivial example we demonstrate the modelling of a relatively large and complex system using

different perspectives. The example also shows that the features of one perspective have a

common purpose, which on the one hand makes it easy to spot and identify features, on the

other hand allows making a clear mental model of the SPL’s capabilities based on the different

viewpoints considered.

8.1 Problem Statement

With the Quiz Product Line (QPL) we want to have the possibility to make different

types of “quiz creation” applications in order to meet the needs of multiple customers and

markets. The product line should be defined such that it allows creating a variable range of

products with various capabilities that satisfy a wide range of potential customers. Customers

range from customers with simple requirements that only need to use the tool in a single user

mode for creating simple text-based quizzes, to expert customers that require a multi user mode

that allows them to create more advanced quizzes. It should be able to localize the Quiz

applications to meet the requirements of users belonging to different regions or countries;

therefore it should have support for several languages namely: English, French, Dutch, Danish,

Arabic and Chinese.

The QPL should have support for the creation of four different types of quizzes,

namely Simple Quiz, Quiz, Exam, and Self Assessments. Furthermore, a Generate Certificate

feature should be provided for customers who wish to use the software for creating exams and

provide a certificate for the exam takers at the end of the exam. This is done via displaying the

certificate at the end of the exam; the certificate states the exam taker’s final score and displays

his/her status (i.e. fail or success). In addition to being displayed on the screen, the generated

certificate can also be sent to a specific email address or sent to a printer.

Chapter 8: The Quiz Product Line Case

120

Additionally, to meet the expectations of as many customers as possible, the QPL

supports three different quiz publishing possibilities, namely publishing the generated quiz to a

CD, publishing the generated quiz in Flash format, and publishing the generated quiz into

HTML, the two last methods are used for the creation of online quizzes. There are two

possibilities for licencing the quiz creation application, either a single user licence, or a multi

user license. In a single user license, the quiz creation application does not store information

about the usage of the quizzes. The single user license is intended for these customers that need

to create simple text-based quizzes; the generated quizzes are always published via Flash, no

other publishing method is supported. For more advanced usage, a multi user license is

supported. A multi user license is provided for customers that wish to use the quiz creation

application to generate quizzes taken by one or more users. A multi user license allows QPL

products to contain one or more of the following quiz types: Quiz, Self-Assessment, or Exam.

Additionally, a multi user license calls for a reporting facility that allows the quiz creator(s) to

view different Statistics concerning the users taking the quizzes. The supported statistics

include Question Usage Statistics, User Statistics, and Answer Statistics. Additionally, for each

use of the software in Self-Assessment mode a report that states the details of this usage is

generated so that users can refer to their self-assessment experience offline. Additionally, while

in Exam mode the software also generates a report for each exam take, the generated report is

for user test tracking while in multi user licence mode.

As already indicated, the QPL is intended for use by many different types of customers,

therefore for enabling the creations of quizzes for example for Math, Physics, and Chemistry an

Equation Editor feature is available for those customers who require it. The Equation Editor

allows integrating math and science symbols into the questions. Also, for more flexibility, two

types of Question editors are supported: a Simple Editor for those customers that only require

the creation of text-based quizzes and a Rich Editor which enables the creation of more

advanced quizzes that contain rich media such as images, audio and video.

Furthermore, the QPL provides a range of question types such as: Multiple Choice, Fill

in the Blank, Matching, True/False, and Sequencing. Two types of Multiple Choice questions

are supported, Single Answer Multiple Choice and Multiple Answer Multiple Choice.

Additionally, the question types range from simple text-based questions to questions that

contain Media such as Images, Audio, and Video for creating more advanced quizzes. The

product line should provide different possibilities for the layout of the quizzes and the

questions. In the QPL three different quiz layout possibilities are specified: Simple Layout for

creating simple quizzes; Template Based Layout which allows to select a template from a pool

of existing templates; and Custom Layout for the creation of more advanced quizzes in which

the layout is customized by the customers to meet their needs.

The QPL should support the following optional capabilities:

 Defining a passing score

 Defining the final score

 Defining a feedback in case of pass and failure

 Defining a question display scheme, schemes supported by the system are one

per page or N per page (i.e. per screen); N is defined by the users.

 A termination page could exist to show the final score or some feedback to

participants.

 In case multi language is supported there should be a facility to allow users to

choose the language of the quiz. This feature is only supported in multi-licence

versions of the application.

Chapter 8: The Quiz Product Line Case

121

 Multiple types of navigation options may be supported such as Forward,

Backwards or Question List.

 A quiz element builder should allow customers to create their quizzes,

optionally the quizzes may be generated via selecting the questions from a pool

of previously defined questions; this feature is only supported in multi-licence

versions of the application.

Additionally, the QPL should support the following optional capabilities for identifying

and manipulating questions belonging to a specific quiz:

 Quiz question creation should be supported based on existing question

templates for the different question types. The question template indicates how

the question and its possible answers (if available) should be laid out on the

screen. The theme colour for the questions is based on the associated quiz

template used.

 Quiz question editing should be supported.

 Quiz question deletion should be supported.

 Questions options should be supported such as Correct Feedback, Incorrect

Feedback, and Question Timeout. Simple quizzes should not contain these

features.

 There exist two methods to calculate the score, a fixed score method which is

the default and a weighted sum method which is optional.

8.2 Feature Assembly Models for the QPL

In this section, we show the necessary steps taken to model the above mentioned

software product line using the Feature Assembly Modelling technique following the guidelines

defined in chapter 6. We start by analysing the basic capabilities of the application (by adopting

the variability analysis
42

 method described in section 6.2), a Quiz application contains the

following set of main (system) features namely: Questions, Layout, License, Report Generator,

Operation Mode, Question Editor, Quiz Question Generator, Utilities, and Publish.

Using the Feature Assembly Perspective Selection process (described in section 6.4.7)

the following perspectives were identified: System perspective; which provided an overview of

the required application; Functional perspective, which provides an overview of the required

variable functionality; Graphical User Interface Perspective, which identifies how the system

interface varies based on the variability of the functional and user requirements; Persistent

perspective, which states the data to be stored in the database and how it varies based on the

variable functionality; and Users perspective to identified the potential users. In the next

sections we describe each perspective and indicate how the features are identified to build up

the QPL feature assembly models. A logical starting point for identifying the features is the

System perspective which captures the main components and capabilities of the QPL.

42

 In this example the domain analysis is straightforward and given in the problem statement. The nouns

identifying (or related) to QPL features are identified in italic in the problem statement.

Chapter 8: The Quiz Product Line Case

122

8.2.1 QPL System Perspective

The System perspective should contain all the main features of the QPL, indicating

how they contribute to the variability of the system. The features should be abstract enough (i.e.

not too many details) to provide an overview of the system capabilities to all involved

stakeholders. The System perspective should not contain too many details of its features; it is

only intended to be a starting point to initiate a more in depth modelling of the system by the

other perspectives.

Going back to the problem statement, each quiz creation application is composed of a

set of mandatory features, namely: Questions, Layout, License, Operation Mode, Score, and

Question Editor. In addition, a quiz creation application is optionally composed of the

following features: Quiz Question Generator, Utilities, Reports, and Publish. Figure 8.1 shows

the complete Feature Assembly model for the System perspective.

The problem statement mentioned several types of question to be supported by the QPL

applications. Therefore, the Questions feature is an abstract feature (i.e. variation point), which

has the following concrete option features (i.e. variants): Multiple Choice Single Answer,

Multiple Choice Multi Answer, Fill in the Blank, Matching, True/False, and Sequencing. In any

valid product (i.e. Quiz creation application) at least two and there is no upper limit for the

selection of these options (i.e. ‘any’); this is specified by the cardinality 2:-. In addition, the

questions could be associated with some multimedia; to represent this we define the abstract

feature Question Multimedia. Question Multimedia has three concrete option features namely:

Audio, Video and Image. At least one should be selected and at most three, therefore we define

a minimum cardinality of one and a maximum of three (as shown in figure 8.1).

There are four different types of operation modes namely: Simple Quiz, Quiz, Exam,

and Self Assessments. Therefore we define Operation Mode as an abstract feature that is

associated with four option features namely Simple OM, Quiz OM, Exam OM and Self-

Assessment OM, each one of them is a concrete feature. Any valid quiz creation application

should have at least one operation mode therefore we define a minimum cardinality of one.

The maximum cardinality is set to 4, which means that the maximum number of operation

modes allowed in any valid application is equal to the number of available option features. This

is indicated by the cardinality “1:4” (as shown in figure 8.1). Furthermore, the QPL supports

three different quiz layouts represented as option features of the abstract feature Layout; these

are Simple, Template Based and Custom. They have a minimum cardinality of 1 and a

maximum of 3 (as shown in figure 8.1). In addition, there are two types of licences available,

therefore we define License as an abstract feature that has two variants Single User and Multi

User, and both are concrete features.

Furthermore, as described by the problem statement, the type of questions supported

and the types of operation modes supported influence by each other. Therefore we identify the

following feature dependencies which capture these dependencies:

 Simple OM excludes Matching

 Simple OM excludes Fill the Blank

 Simple OM excludes Sequencing

 Self-Assessment OM excludes Single User

 Exam OM excludes Single User

 The System perspective also holds features related to the quiz generation process. The

Quiz Question Generator feature is a concrete feature composed of a Randomize feature which

is a concrete feature responsible for making the questions random. The feature Randomize is

Chapter 8: The Quiz Product Line Case

123

composed of a mandatory concrete feature Fixed Options (which represents a normal random

number generator) and an optional concrete feature Branching Path (which allows creating

paths for selecting the next question to display). There is also the Question Editor feature which

is an abstract features specified into two concrete features Simple Editor and Rich Editor. In a

valid configuration at least one editor type is supported, therefore the abstract feature Question

Editor has a minimum cardinality of one. Furthermore, the Score feature captures the different

techniques supported for calculating the quiz score. Score is an abstract feature specified by

two concrete features: Weighted and Fixed. Score has a minimum cardinality of one.

Figure 8.1: QPL System Perspective

The QPL also has a set of advanced features such as the concrete feature Equation

Editor, the concrete feature Quiz Settings, and the concrete feature Generate Certificate. These

features, although not particularly providing variation of the same functionality, provide a

variation of the same concept, namely they represent different variations of utilities. Therefore

we specify these features as variants of the Utilities feature. There is no obligation to select any

of these utilities to be included in specific product. Therefore the Utilities feature has an

optional feature composition relation with its parent feature (i.e. Quiz). On the other hand,

when selected at least one utility should be selected. Therefore, we define a minimum

cardinality of one and there is no upper limit on the maximum number of utility features

selected therefore we set a maximum of any for the Utilities Feature. Furthermore, the

Chapter 8: The Quiz Product Line Case

124

Generate Certificate feature can be further decomposed into Display Certificate which is a

mandatory concrete feature, Print Certificate which is an optional concrete feature, and Email

Certificate which is also an optional concrete feature.

The System perspective also provides some information on the support provided for

publishing the quizzes and the different types of reports supported via two abstract features

Publish and Reports respectively. The Publish feature has the following variants (all of which

are concrete features): CD, Flash and HTML. At least one specific type of publishing method

needs to be selected therefore a minimum cardinality of one is specified. The Reports feature is

further specified to the following features: Assessment Report, Test Result Report, and Admin

Report. We define a minimum cardinality of one and a maximum of three for the Reports

feature. The features Test Result Report and Admin Report are concrete features. The feature

Assessment Report is an abstract feature than can be further specified to Question Usage

Statistics, User Statistics, and Answer Statistics. A minimum cardinality of two and a maximum

of any is defined for the Admin Reports feature (as shown in figure 8.1). The existence or

absence of the Publish and Reports features in a valid product is influenced by other features of

the QPL. We model this influence via the following feature dependencies:

 Self-Assessment OM requires Assessment Report

 Multi User requires Admin Report

 Exam OM requires Test Result Report

 Single User excludes Flash

 Single User excludes CD

 Simple OM requires HTML

The next step is to analyse the overall System perspective model to define missing

feature dependencies, the dependencies are defined based on the restrictions defined in the

problem statement. The following dependencies were defined:

 Exam OM requires Generate Certificate

 Self-Assessment uses Branching path

 Email Certificate requires Multi User

Figure 7.1 shows the complete Feature Assembly model for the System perspective; the

feature dependencies are also displayed in the model. As the model grows and the number of

feature dependencies becomes too large, we could use the textual specification for specifying

them.

Next, we will model the Users perspective to have an overview of the potential users of

a quiz creation application; we show the model in the next section.

8.2.2 QPL Users Perspective

 As already mentioned, the Users perspective is intended to provide an overview of the

potential users of the quiz creation applications. We define the following main features:

Education, Business, and General. The three features are considered specifications of the

abstract concept Usage Domains. The Usage Domains feature has a minimum cardinality of

one and a maximum of one, which means that only one usage domain should be taken into

consideration for a specific product, i.e. a quiz creation application can be configured for only

one specific user group.

Education represents the concept of the education domain users. It is modelled as an

abstract feature and is further specified by three concrete features namely: Primary School,

Chapter 8: The Quiz Product Line Case

125

Higher Education, and Secondary Schools. There is no obligation on the upper limit selection

of these user groups and therefore the Education feature has a minimum cardinality of one and

a maximum of any. Business is also abstract and is further specified into the following concrete

features: Small-Medium Business, and Cooperate Business. The Business feature has a

minimum cardinality of one and a maximum of any.

We also define the following

feature dependencies, which limit the

possible configurations of the QPL for the

Education user group (as shown in figure

8.2):

 Secondary Schools excludes

Higher Education

 Primary Schools excludes

Higher Education

 Education excludes Business

Having modelled the features of the

System perspective and the Users

perspective, the next step is to proceed

with defining feature models for the

other perspectives. In principle this

can be done in parallel by different teams. In our demonstration, we will proceed with the

functional perspective, then the Graphical User Interface perspective, and finally give the

Persistent perspective.

8.2.3 QPL Functional Perspective

As already mentioned, the Functional perspective focuses on defining features that

represent the functionality provided by the QPL and how this impacts variability. Based on the

problem statement, we identify the following main functional features: Quiz Manipulation,

Quiz Reporting, Quiz Presentation, Answer Validation, Operation Mode, Quiz Settings,

Operational Settings, and Quiz-Question Assignment. They are explained further on. Figure8.3

shows an excerpt
43

 of the Functional perspective feature model. Figures 8.4, 8.5, 8.6, and 8.7

show details of the rest of the model.

In order to capture the allowed possibilities of manipulating a quiz and how they may

differ in different products, we define the Quiz Manipulation feature. The Quiz Manipulation

feature refers to the functionalities available to make up a specific quiz so it needs to be present

in all products; therefore it is a mandatory feature. In all products of the QPL it should be

allowed to create and delete a specific quiz instance. Furthermore, editing a specific quiz

instance is only allowed in the case of a Multi-User License. Therefore, the Quiz Manipulation

feature is mandatory composed of Creation and Deletion; and optionally composed of Editing.

Furthermore, the dependency Editing requires Multi User holds. The Creation feature is further

specified into four different varieties depending on the specific type of quiz that is created, i.e.

Standard Quiz, Exam, Self-Assessment, and Simple Quiz, which map to the features StdQ

Creation, Exam Creation, SlfA Creation and SimQ Creation as shown in figure 8.3. Each of

43

 The complete model was broken up due to space limitations, the rest of the model is presented in

figures 8.4, 8.5, 8.6 and 8.7.

Figure 8.2: QPL User Perspective

Chapter 8: The Quiz Product Line Case

126

these option features is a concrete feature. There is no need for further decomposition of these

concrete (option) features because their decomposition is purely functional and does not

contribute to the variability of the system. The Creation feature has a minimum cardinality of 1

and a maximum of any. Similarly, the Editing feature has four different varieties, therefore it is

represented as an abstract feature that has the following option features: StdQ Editing, Exam

Editing, SlfA Editing and SimQ Editing which allow editing the following Quiz elements

respectively: Standard Quiz, Exam, Self-Assessment, and Simple Quiz. Each of these option

features is a concrete feature. For the Deletion feature there is no need for further

decomposition because it contains no variability; the deletion process for all quizzes is the

same. This is shown in figure 8.3.

Furthermore, the functionality of defining different question instances that belong to

the created quiz instances is represented by the Question Writer feature. This functionality is

available for all quiz products and therefore it is a mandatory feature. The Question Writer

feature is a concrete feature responsible for the authoring (i.e. adding, editing, and deleting) of

the question instances of the different question types. Therefore, it is mandatory composed of

the following concrete features: Question Addition, Question Editing and Question Deletion,

and optionally composed of the concrete feature Question Settings. The addition of questions

may vary from one quiz product to another; this is shown by the decomposition of Question

Addition feature. The Question Addition feature is composed of the following mandatory

features: Question Type Selection, Question Text Addition, Answers Addition, and Correct

Answer Definition, and optional composed of: Question Assessment Addition and Question

Category Assignment. Furthermore the selection of these optional features is constrained by the

following intra-perspective feature dependencies:

 System.Self-Assessment OM requires Question Assessment Addition

 System.Multi User requires Question Category Assignment

The assessment addition is a combination of adding the assessment text and adding the

assessment media. To represent this, the Question Assessment Addition is mandatory composed

of the concrete feature Assessment Text Addition and optionally composed of the concrete

feature Assessment Media Addition. Each created question has a set of options that could be

further specified; this is indicated by the Question Settings feature. The Question Settings

feature is optionally composed of the concrete features Correct Feedback, Incorrect Feedback,

and Question Timeout, which refer to the setting of correct feedback, incorrect feedback, and

question timeout respectively. Additionally, the Question Settings feature is mandatory

decomposed into the abstract feature Score Calculation, which identifies the method for the

score calculation. The Score Calculation feature has two concrete option features Fixed Score

Calculation and Weighted Score Calculation (for weighted score of the questions) and at least

one has to be selected. This is shown in figure 8.3.

For each quiz instance created a set of options are available so that the customers can

customize their created quizzes. This set of quiz options varies for the Quiz products derived

from the QPL. The feature responsible for representing these options is the Quiz Settings

feature. The Quiz Settings feature is a concrete feature mandatory composed of the following

concrete features (which all represent setting of the information they represent): Passing Score,

Final Score, Failing Feedback, Passing Feedback, and Title. Additionally, the Quiz Settings

feature is optionally composed of the abstract features: Question Display Scheme, Navigation

Options, and Multimedia. It is also optionally composed of the concrete features: Termination

Page, Language, Instructions, and Display Question List, as shown in figure 8.3. The

Multimedia feature has two concrete option features, namely Sound, which is responsible for

question sound effects and QImage, which is responsible for displaying images for the quiz

instances (e.g., correct answer image, wrong answer image, quiz termination image). The

Question Display Scheme feature identifies the possibilities for displaying the questions in a

Chapter 8: The Quiz Product Line Case

127

F
ig

u
re

 8
.3

:
A

n
 e

x
ce

rp
t

o
f

th
e

 Q
P

L
 F

u
n

ct
io

n
al

P

er
sp

ec
ti

v
e

Chapter 8: The Quiz Product Line Case

128

 certain quiz instance; it has two concrete option features, namely One per Page and N per

Page. The Navigation Options has three different navigation possibilities represented by the

concrete option features: Forward, Backward and Question List.

The Functional perspective also defines its own Operation Mode feature, this feature is

the same feature as the one defined in the System perspective. Like in the System perspective,

the Operation Mode feature is an abstract feature associated with four option features namely

Simple OM, Quiz, OM, Exam OM and Self-Assessment OM, each one of them is a concrete

feature, as shown in figure 8.3.

Once a quiz instance is created it

needs to be populated with questions, the

feature that represents this functionality is

the Quiz-Question Assignment feature.

This is a requirement for all products

created by the QPL and therefore it is

mandatory (as shown in figure 8.3). There

are two possibilities to populate quiz

instances with questions 1) through

question pooling (e.g., from database) and

2) by fixing the questions into the created

quiz instances. A valid Quiz product

configuration may have both. Therefore,

the Quiz-Question Assignment feature is

an abstract feature that is specified by the two concrete features Fixed Assignment and Question

Pool Assignment. The Question Pool Assignment feature is optionally decomposed into the two

concrete features User Based Assignment (i.e. Question Pooling based on the user who entered

the questions) and Category Based Assignment (category based selection of the questions).

Furthermore, the feature Fixed Assignment should always be selected in all products of the

QPL. This is guaranteed by adding the dependency: Quiz-Question Assignment requires
Fixed Assignment.

The different quiz products created may vary in their purpose of use; therefore the QPL

provides flexibility in the usage operation modes that could be required by the different

customers. The feature that represents these different modes of operation is the Operational

Settings feature, which is an optional feature (as shown in figure 8.3). The Operational

Settings feature is a concrete feature mandatory composed of the abstract feature Registration

and the concrete feature Usage Settings. The feature Usage Settings represents the different

possibilities that can be customized (by customers) for users taking a certain quiz. It is

decomposed into the concrete feature Question Reviewing (optional decomposition) and the

abstract feature Result Settings (mandatory decomposition). The Result Setting feature is further

specified by two concrete features, Quiz Result Settings and Exam Result Settings. The Quiz

Result Settings feature is mandatory composed of the concrete features Result Display and

Status Display. In addition, it is optionally composed of the concrete features Passing Score

Display, and Result Storing and the abstract feature Result Comparison. The feature Result

Comparison has two specifications Same User Comparison and Other Users Comparison; it

has a minimum cardinality of one, and a maximum of two. The Exam Result feature is

mandatory composed of the abstract feature Result Display Scheme, and the concrete feature

Status Display. In addition, it is optionally composed of the concrete features Passing Score

Display, Certificate Printing and Exam Result Storing. On the other hand, the Registration

feature is specified by two concrete option features Optional Registration and Enforced

Registration, i.e. the quiz can be configured to force users to register or to leave it up to the

user. Figure 8.5 shows the FAM feature model that shows this decomposition.

Figure 8.4: Functional Perspective - the Quiz-Question

Assignment Feature

Chapter 8: The Quiz Product Line Case

129

Figure 8.5: Functional Perspective - the Operational Settings Feature

 The QPL provides two techniques that allow

customers to customize the answer validation

process. The Answer Validation feature is

responsible for defining the possibilities for

validating the user answers; as shown in figure 8.6 it

is an abstract feature that has two concrete option

features, Instantaneous Validation and On

Submission Validation. At least one has to be

selected and there is no restriction on the maximum

cardinality specified (i.e. any).

The Quiz Layout feature shown in figure 8.7 is a more detailed description of the Quiz

Layout feature defined in the System perspective. Similar to the one defined in the System

perspective, the Quiz Layout is an abstract feature, specified by three concrete features namely:

Simple, Template Based and Custom which denote three types of supported layouts namely:

simple layout, template based layout and custom layout. The Simple feature is mandatory

composed of the abstract feature Background Selection and the concrete feature Structure

Selection. The Background Selection feature has two specifications Color Customization and

BGImage Selection, at least one of them has to be selected. The Template Based feature is

mandatory composed of the concrete feature Template Library which represents a template

library of ready to use templates and which allows to select and use a specific template.

Additionally, the Template Based feature is optionally composed of the concrete features

Figure 8.6: Functional Perspective - the Answer

Validation Feature

Chapter 8: The Quiz Product Line Case

130

Template Import and Color Customization. The Custom feature is mandatory composed of the

concrete feature Template Editor and optionally composed of the Concrete feature Template

Designer.

The QPL also provides different reporting possibilities, these are defined by the Quiz

Reporting feature shown in figure 8.8. The Quiz Reporting feature is an abstract feature that has

two abstract option features, Admin Reporting and User Reporting; there is no obligation on

their selection. The Admin Reporting feature is specified by the concrete features Generate

Question Usage Statistics, Generate User Statistics, Generate Answer Statistics, and User

Comparison Reporting, in addition to the abstract feature Custom Reporting. At least three

different report types should be selected, no particular maximum number of features is

obligated (i.e. “any”). Custom Reporting is further specified by the option features Exam CR,

Quiz CR, Self-Assessment CR (where CR stands for custom reporting), all concrete features.

The User Reporting abstract feature has the following concrete option features: Exam Result

Reporting and Assessment Reporting in addition to the abstract option feature Quiz Reporting.

Figure 8.8: Functional Perspective - the Quiz Reporting Feature

Figure 8.7: Functional Perspective - the Quiz Layout Feature

Chapter 8: The Quiz Product Line Case

131

The abstract feature Quiz Reporting is specified by the concrete option features Quiz

Summary Reporting and Self Quiz Comparison Reporting; at least one has to be selected.

Furthermore, the following feature dependencies govern the selection of the reporting features.

 Custom Reporting requires System.Multi License

 Exam CR requires System.Exam OM

 Quiz CR requires System.Quizz OM

 Self-Assessment CR requires System.Self-Assessment OM

8.2.4 QPL Graphical User Interface Perspective

As already mentioned, the Graphical User Interface (GUI) perspective focuses on defining

features that the end-user of the application will interact with and view. Figure 8.9 shows the

main features of the GUI perspective for the QPL. Some of these features will be further

specified in subsequent figures. From a GUI point of view the QPL consists from the following

features: User Reporting, Admin Reporting, Login, Quiz Layout, Question Layout,

Internationalization, Registration, and Question Pooling. The features Quiz Layout, Question

Layout, and Internationalization are mandatory parts of the QPL GUI, while User Reports,

Admin Reports, Login and Question Pooling are optional parts of the QPL GUI. The features

are explained in more details below.

The feature Quiz Layout represents the layout of the quiz from a user interface point of

view. It is an abstract feature that has the following concrete option features, Simple, Template

Based, and Custom (similar as in the Functional perspective). At least one layout type should be

selected. Template Based is mandatory composed of the concrete feature Template Browsing,

and it is optionally composed of the concrete features Template Preview, Template Import, and

Template Color Customization.

To support different markets, there is a need to define the user interface elements that

are subject to change based on the market requirements; the Internationalization feature

represents this. The Internationalization feature is the feature responsible for providing

localization (i.e. adapting the interface to language and customs of different localities). It is

mandatory composed of the features Scrolling, UI Components Locality, and Text Locality.

Scrolling is an abstract feature that is further specified into the abstract features Vertical and

Horizontal. The feature Vertical is further specified into the two concrete option features Top-

Down and Down-Top. The feature Horizontal is further specified into the two concrete option

features H-RTL and H-LTR which represent the right-to-left and left-to-right directions of the

scrolling. The feature UI Components Locality is mandatory composed of the abstract feature

UI Direction and optionally composed of the concrete feature UI Colors. UI Direction is

specified by two concrete option features LTR and RTL to represent the right-to-left and left-to-

right direction of the interface components layout. The Text Locality concrete feature is

composed the following abstract features: UI Language, Cursor Orientation, and Text

Direction. The languages supported by the QPL are represented as concrete features, these are:

English, French, Dutch, Danish, Chinese, and Arabic. In a valid product configuration a

minimum of two languages should be selected and a maximum of three. The Text Direction

Chapter 8: The Quiz Product Line Case

132

F
ig

u
re

 8
.9

:
G

U
I

P
er

sp
ec

ti
v

e

Chapter 8: The Quiz Product Line Case

133

feature is specified by two concrete option features, LTR
44

 and RTL. Similarly, Cursor

Orientation is specified by two concrete option features, LTR and RTL. Furthermore the

following feature dependencies hold:

 English requires LTR

 French requires LTR

 Dutch requires LTR

 Danish requires LTR

 Chinese requires RTL

 Arabic requires RTL

 RTL requires H_RTL

 LTR requires H_LTR

 Language requires English

Allowing users to

register, and therefore login,

will have an impact of the

user interface. Therefore,

we define the Registration

feature and the Login

feature to represent this

characteristic, as they need

not be present in all

products of the QPL, they

are defined as optional. The

abstract Registration

feature, shown in figure

8.10.a, is further specified

by the concrete features

User Registration (which

defines a user registration)

and Admin Registration

(which defines an

administration registration),

a minimum cardinality of

one is specified and a maximum of two. The dependency Simple OM excludes Admin

Registration holds. Similarly there are two types of login defined for the abstract Login

feature: User Login and Admin Login; having a minimum cardinality of one and a maximum of

two. This is shown in figure 8.10.b.

From a graphical user interface point of view, there are two methods for selecting the

questions that belong to a certain quiz created; these are by manual selection or by using a

wizard. To indicate this, the Question Pooling feature is defined. It is an abstract feature which

is further specified by two concrete option features Question Selection Pooling, which

represents the manual selection of the questions that belong to a certain quiz; and Question

Pooling Wizard, which represents the use of a wizard to select the questions that belong to a

44

 Note the use of the same feature name to refer to the same feature in the perspective (as mentioned in

chapter 6).

(a) (b)

(c) (d)

Figure 8.10: GUI Perspective – a) The Registration Feature, b) The Login

Feature, c) The Question Pooling Feature, d) The User Reporting Feature

Chapter 8: The Quiz Product Line Case

134

certain quiz, see figure 8.10 (c). Similarly, there are two ways to present the user reporting

information to end users, either as a non-interactive report listing the information (referred to as

summary reports) or as detailed information in which further queries will be issued (referred to

as detail reports). This is represented in figure 8.10.d, which shows the User Reports abstract

feature having two concrete option features Summary Reports and Detail Reports.

As already mentioned in the Functional perspective, the QPL provides different

possibilities for manipulating the questions. This will impact the graphical user interface of the

QPL. To represent this, the feature Question Layout is defined, its composition is shown in

figure 8.11. The Question Layout feature is a concrete feature mandatory composed of

Authoring Facilities and Question Author. In addition, it is optionally composed of Question

Media. The Authoring Facilities feature is a concrete feature mandatory composed of the

concrete feature Question Add. It is optionally composed of the concrete features Question Edit,

Question Delete, Question Copy, and Question Preview. The Question Author feature is an

abstract feature that is further specified by the concrete option features that identify different

possibilities for authoring a question, these are: Question Authoring Wizard, Question

Authoring Forms, and Question Editor; at least one of these features should be selected and at

most two. The concrete Question Media feature is mandatory composed of the User Defined

Media feature and is optionally composed of the concrete features Clipart Media and Media

Preview.

8.2.5 Completing the Model

The three previous perspectives identify the features that represent the characteristics,

capabilities and appearance of the application. Therefore, if there were no persistent features

the modelling process would have stopped here. As already mentioned (in chapter 7), the

modelling of the persistent perspective depends greatly on the features identified so far in the

different perspectives. For this reason, before proceeding with the persistent perspective, it is

recommended to inspect the defined perspectives in order to validate their completeness (i.e. no

missing features or dependencies). The model should also be checked for completeness of intra

perspective dependencies and feature completeness.

The following dependencies were missing dependencies for the QPL:

 The System feature Score is the same as the Functional feature Score Calculation.

Therefore, a same feature dependency should be added as follows:

Figure 8.11: GUI Perspective- Quiz Layout Feature

Chapter 8: The Quiz Product Line Case

135

o System.Score same Functional.Score Calculation

 The System feature Operation Mode is the same as the Functional feature Operation Mode

Therefore, a same feature dependency should be added as follows:

o System.Operation Mode same Functioanl.Operation Mode

Furthermore, when analysing the complete
45

 model the following additional

dependencies could be identified:

 The multi user license requires the support for defining and changing the usage settings of

the application. Therefore, this triggers a requires dependency between the two features

Multi User (belonging to the System perspective) and Usage Settings (belonging to the

functional perspective) as follows:

o System.Multi User requires Functional.Usage Settings

 The exam mode of the quiz application requires the support for navigation buttons in order

to navigate through the exam. In addition to a termination page that states the end of the

questions and the result of the exam, there should also be support for failing feedback and

passing feedback. To achieve this the following feature dependencies need to be added:

o System.Exam requires Functional.Navigation Options

o System.Exam requires Functional.Passing Feedback

o System.Exam requires Functional.Failing Feedback

o System.Exam requires Functional.Termination Page

 To prohibit that a valid quiz product allows the inclusion of the questions of types fill the

blank, matching, and sequencing in the simple operation model version, the following

feature dependencies need to be added:

o System.Simple OM excludes System.Fill the Blank

o System.Simple OM excludes System.Matching

o System.Simple OM excludes System.SequencingQ

 In any quiz product the addition of question assessments requires that the Question

Assessment Addition feature is selected, this is represented by the following feature

dependency:

o System.Self-Assessment requires Functional.Question Assessment

Addition

 The question editing was represented by the Question Editor feature defined in the system

perspective. In the functional perspective this was represented by the Question Writer

feature, therefore a same feature dependency should be added as follows:

o System. Question Editor same Functional.Question Writer

 The Question Writer feature defined in the functional perspective is responsible for adding

questions to the application. In the GUI perspective different presentation types for

question editing were distinguished, represented by the Question Author feature. This

situation is represented by adding a uses dependency as follows:

o GUI.Question Author uses Functional.Question Writer

45

 In a real case scenario, the complete model will be analysed by different stakeholders, therefore this

may result in identifying more feature dependencies. This could be based on emerging requirements,

feature co-existence requirements, or feature exclusion requirements.

Chapter 8: The Quiz Product Line Case

136

8.2.6 QPL Persistent Perspective

 As already mentioned in chapter 7, the Persistent perspective represented the features

with a persistent nature. The objective is to indicate how variability affects the data persistency

and therefore the underlying data model. As already mentioned, identifying features for the

Persistent perspective is driven by the features defined in the other perspectives. For the QPL,

we can distinguish three main persistent features: 1) the Persistent QPL feature which

represents a quiz (along with all its associated questions, media, options ... etc.), 2) the User

feature which represents a user taking a quiz together with all his information, 3) the User-Quiz

Info feature which represents the information for a user taking a certain quiz. We will model

each of them in more details.

The concrete Persistent QPL (persistent) feature (shown in figure 8.12) is composed of

features related to the data stored for generating quizzes within an application. We distinguish

two types of persistency, resulting into the features File based Persistent, and DB Persistent.

Both are specifications of the abstract feature Quiz Storage. Furthermore, the System

Figure 8.12: Persistent Perspective –Persistent QPL Feature

Chapter 8: The Quiz Product Line Case

137

perspective identifies different types of questions supported by the QPL and the Functional

perspective defines a set of options available for each quiz (represented by the Quiz Settings

feature). Based on this information, we can conclude that the Persistent QPL feature should be

mandatory composed of the abstract feature Question Type, the abstract feature Quiz Storage,

and the concrete feature Question. In addition, the Persistent QPL feature is optionally

composed of the abstract feature Question Media and the concrete feature Quiz Preference; this

is shown in figure 8.12. Also, the following intra-perspective dependencies hold:

 System.Simple OM uses File Based Persistent

 System.Multi User excludes File Based Persistent

The abstract feature Question Type is specified by the following concrete option

features: Sequencing Q, Matching Q, True/False Q, Fill the Blank Q, in addition to the abstract

feature Multiple Choice Q. The feature Multiple Choice Q is specified by two concrete option

features: Multiple Choice - Single Answer and Multiple Choice - Multi Answer. In any valid

product of the QPL at least one type of question is supported, therefore a minimum cardinality

of one is defined.

The abstract feature Question Media is specified by the following concrete option

features: Audio, Video, and Image, with a minimum cardinality of one and maximum

cardinality of three. The Quiz Preference feature is used to store the quiz information of the

Quiz Settings feature defined in the Functional perspective (please refer to section 8.2.3),

therefore it is composed of the features that contain data to be stored for a particular quiz.

The Question feature

represents the persistent

information associated with the

different questions of a product.

The Question feature is a

concrete feature that is

optionally composed of

Question Options and Question

Assessment. The Question

Assessment feature is

mandatory composed of

Assessment Text and optionally

composed of Assessment

Media. The Question Options

feature is optionally composed

of: Weight, TimeOut, Wrong

Answer Feedback, and Correct

Answer Feedback, as shown in figure 8.13.

The User feature represents the data associated with the end-users of a QPL

application. Although the feature “User” (i.e. test taker) was not explicitly present in the other

QPL perspectives, user related features exist in the Functional perspective (e.g., User Login and

User Registration). The features composing the User feature stem from the System perspective

and the Users perspective and they represent the information that should be stored about the

users of the application. The Feature Assembly model of the User feature is shown in figure

8.14; it is mandatory composed of the Login Information feature (which is composed of User

Name and Password), the Name feature and the Email feature. In addition, it is optionally

composed of the User Details feature which holds additional information on the users of an

application. The User Details feature is based on the different user features defined in the Users

perspective. It is an abstract feature associated with two concrete option features, School and

Figure 8.13: Persistent Perspective – Question Persistent Feature

Chapter 8: The Quiz Product Line Case

138

Business. School is mandatory composed of School Name, School Grade, and Class. Business

is mandatory composed of Department and Branch.

Figure 8.14: Persistent Perspective – User Persistent Feature

Figure 8.15 shows the Feature Assembly model for the feature User-Quiz Info, which

represents a user having taken a certain quiz or exam. It is an abstract feature that is further

specified by two concrete features, Exam and Quiz. Exam is mandatory composed of User,

Time stamp, Score, and Status optionally composed of Exam Questions and User Answers.

Quiz is mandatory composed of User, Time Stamp, and Score. Note that the User feature is

used for both Exam and Quiz and also it is the one shown in figure 8.14.

Figure 8.15: Persistent Perspective – User-Quiz Info Persistent Feature

Furthermore, the following set of dependencies show how the Persistent perspective

related to the other perspectives.

 System.Muli User requires Persistent.User

 Users.School requires Persistent.School

 Users.Bussiness requires Persistent.Bussiness

 System.Self-Assessment requires Persistent.Question Assessment

Chapter 8: The Quiz Product Line Case

139

8.3 QPL Variable Data Model

As already mentioned in chapter 6, the Persistent perspective is an intermediate step

between the variability of the software product line and the variability of the underlying

database schema. To obtain the QPL variable data model, we adopt the centralized data model

approach described in section 7.2.1. This allows establishing a link between the features

defined in the Persistent perspective and the (variable) entities that should be part of the derived

variable data model. The mappings used to relate Persistent features to data model entities are

shown in listing 8.1. From this mapping we are able to propagate feature variability to entities

defined in the data model. The result of this process is the EER data model
46

 for the QPL

example shown in figure 8.16

o System.Quiz Application <<relates_to>> Data_Model.User

o Persistent.Question <<maps_to>> Data_Model.Question

o Peristent.Passing Feedback <<maps_to>> Data_Model.Passing Feedback

o Persistent.Failing Feedback <<maps_to>> Data_Model.Failing Feedback

o Persistent.Termination Text <<maps_to>> Data_Model.Termination Page

o Persistent.Filltheblank <<maps_to>> Data_Model.FilltheblankQ

o Persistent.Matching <<maps_to>> Data_Model.MatchingQ

o Persistent.Sequencing <<maps_to>> Data_Model.SequencingQ

o Persistent.True/False <<maps_to>> Data_Model. True/False Q

o Persistent.Question Assessment <<relates_to>> Data_Model.Question

Assessment

o Functional.Navigation Options <<maps_to>> Data_Model.Forward and

Data_Model.Backward

o System.Multi User <<relates_to>> Data_Model.Admin

o System.Multi User <<relates_to>> Data_Model.Question Options

o System.Multi User <<relates_to>> Data_Model.Quiz Element Options

o Persistent.User <<relates_to>> Data_Model.User

o System.Exam <<relates_to>> Data_Model.Sound Effects

Listing 8.1: Feature Assembly-to-data model mappings

46

 An Example of how this is used for deriving tailored product data schemas is shown in our publication:

Towards Modeling Data Variability in Software Product Lines [Abo Zaid and De Troyer, 2011]

Chapter 8: The Quiz Product Line Case

140

Figure 8.16: QPL Variable Data Model (Represented with EER)

8.4 Extensibility of the Feature Assembly Modelling

Technique – An example

As already mentioned, one of the merits of the Feature Assembly Modelling technique

is its extensibility. A new perspective can be added to the set of perspectives (defined in section

6.4) if there is a need for it. Defining a new perspective implies defining the purpose for the

newly defined perspective (i.e. narrowing down the general perspective definition given in

definition 6.2) and providing a definition for the concept of “feature” within the newly defined

perspective (by narrowing down the general feature definition given in definition 6.3)

In the QPL there is a need to extend the QPL for different markets and therefore for

different cultures. This need was taken into account in the Graphical User Interface where a

software localization strategy was adopted. Software localization focuses on the localization of

the software aspects such as the interface elements and the interface language. This may not be

enough in order to gain a true significant market segment, as the software may remain far from

the end user’s anticipation, ideas, and even how he does his tasks. In order to gain a real

valuable share of the market, there could be a need for the development of software that meets

different cultural values, ideas and procedures (according to Kersten et al. [2002]). This can

Chapter 8: The Quiz Product Line Case

141

only be done if culture
47

 is taken into account in the early development of the software. Cultural

aspects should not only affect the interface layer of the software but also penetrate deep in the

core; such software is referred to as being culture-dependent. The core of a software artefact

embeds decision-making, rules of behaviour and patterns of actions that depend on culture

[Kersten et al., 2000].

In order to combine cultural variations with the QPL product variability, we define an

additional perspective that represents cultural aspects that affect the QPL and we call it the

Cultural perspective. The Cultural Perspective takes into account the different cultural aspects

that may influence the localization of the quiz products when targeting different markets. The

features identified in this perspective are based on the understanding of the different cultural

dimensions
48

. The cultural dimensions that will affect the localization of the software are thus

mapped into features in the Cultural perspective. The importance of this mapping is the

influence these “cultural features” could have on some possible combinations of product

features. This influence will spread to features belonging to other perspectives and will be

denoted via the intra-perspective feature dependencies.

Figure 8.17: Cultural Perspective

Figure 8.17 shows the Feature Assembly model of the Cultural Perspective. The main

feature in the model is the Locality feature which is a concrete feature mandatory composed of

the abstract feature Country and optionally composed of the concrete feature Cultural Aspects.

The Country feature is an abstraction of the different target countries; therefore it is specified

by the following concrete features Denmark, Belgium, France, Egypt, and China. At least one

country has to be selected and at most one, as specified by the cardinality shown in figure 8.17.

The Cultural Aspects feature is optionally composed of the abstract features: Technology Skills,

MAS, IC, and Power Distance. Technology Skills is specified by the concrete features High TS

and Low TS. MAS (refers to masculinity versus femininity) is specified by the concrete features

47

 Culture is a world of symbols constructed by people; it is a structure of meanings, beliefs and values

that condition human behaviour allowing for its interpretation and purposefulness as defined by [Kersten

et al. 2000].
48

 Cultural dimensions are mostly sociological dimensions, or value constructs, which can be used to

describe a specific culture. In the example, we use the cultural dimensions identified by G. Hofstede

commonly referred to as Hofstede's Culture Dimensions. For more information we direct the readers to

http://www.geerthofstede.nl/culture/dimensions-of-national-cultures.aspx.

Chapter 8: The Quiz Product Line Case

142

Masculinity and Femininity. IC (refers to individualism versus collectivism) is specified by the

concrete features Individualism and Collectivism. Power Distance is specified by the concrete

features High PD and Low PD. Furthermore, the following feature dependencies can be

identified:

 Belgium requires Dutch

 Belgium requires English

 Belgium requires French

 Egypt requires Arabic

 Egypt requires English

 France requires French

 Denmark requires Danish

 China requires Chinese

 UK requires English

 System.Custom uses Individualism

 High PD requires System.Template Based

 High PD excludes System.Custom

 Collectivism requires System.Standard

 Users.Primary schools uses Individualism

 Layout uses Low TS

 Users.Primary School uses Low TS

8.5 Lessons Learned

Having used the Feature Assembly Modelling technique on this large example we

came to the following observations:

1. The Feature Assembly Perspective Selection process (described in section 6.4.7)

helps identifying the set of perspectives relevant to model a certain problem. This

is a simple approach and yet provides more guidance as opposed to leaving it

entirely up to the involved modellers to define the appropriate perspectives which

could be efficient for the configuration problem (e.g. the work on using

perspectives as abstraction mechanism for configurations driven by feature models

(e.g. Hubaux et al. [2011], Schroeter et al. [2012], Acher et al. [2012])) but maybe

less suitable for modelling.

2. Starting with the system perspective helps revealing the key capabilities and

characteristics of the system, which are then investigated in more details in the

other different perspectives. The system perspective as an abstraction mechanism

helps moving from more abstract system commonality and variability to more

concrete and detailed ones in subsequent perspectives.

3. Features may be defined based on more than one point of view. Furthermore a

feature may have more than one face. Therefore, representing features using the

multiple perspective approach helps projecting the feature on the different concerns

that it relates to, allowing to focus on one concern at a time.

Chapter 8: The Quiz Product Line Case

143

4. The modelling process stops when no variability is encountered when decomposing

features (as already mentioned in section 6.5.2).

Some comments on the usability of the technique are:

1. The Feature Assembly Modelling language has strict rules for modelling relations

between features. We found this helpful in defining better models and it forced us

to have a thorough understanding of how the different features are

composed/decomposed, how they relate to variability, and affect each other.

2. Change and maintenance of the models already created, due to emerging

requirements is possible. Adding new features to a perspective requires an

understanding of how the added features would influence the already existing

features. This influence (if any) is then expressed by feature dependencies.

3. The technique allows using only those perspectives that are useful for identifying

features that characterize and describe the capabilities of the product line. So,

modellers are not forced to make models that they don’t need or don’t consider

useful.

4. The extensibility of the technique allows adding perspectives when they are

required.

5. By separating feature composition from feature specification/generalization the

Feature Assembly approach helps defining the features of the product line focusing

on either feature composition or feature specification. This has resulted in easier to

spot variation points and a better understanding of the variable capabilities of the

product line.

8.6 Summary

In this chapter, we have demonstrated with an example how the Feature Assembly

Modelling technique can be used in practice. We have presented the Quiz Product Line

example, which is a product line for delivering question based quizzes and exams. We have

identified the following perspectives System perspective, Users perspective, Functional

perspective, Graphical User Interface Perspective, and Persistent perspective. For each of

these perspectives we have identified the features that belong to it and their feature-to-feature

dependencies. Furthermore, we have shown how a variable data model can be derived from the

Persistent perspective using the techniques described in chapter 7.

 Additionally, we showed with an example how the Feature Assembly Modelling

technique is extensible. We have added a new perspective, the Cultural perspective, to the set

of standard perspectives. We showed how the features of the new perspective affected the

overall models of the QPL. This effect was captured via a set of feature-to-features

dependencies. Finally, we concluded the chapter with a set of conclusions about the use of the

Feature Assembly Modelling technique for this example.

144

Chapter 9: The Feature Assembly Reuse Framework

145

Chapter 9

The Feature Assembly Reuse Framework

In this chapter, we present the Feature Assembly Reuse Framework which allows

modelling variable software by combining both reusability and variability. The Feature

Assembly Reuse Framework is a modelling by reuse method for creating Feature Assembly

models. It allows reusing model constructs (i.e. features) of previously defined variable

software products while also defining new ones. The idea that Feature Assembly brings is the

ability to reuse domain analysis information in new projects. We believe that software reuse

should start at a design level. In doing so, reuse could be promoted and supported from the

initial software conception phase (i.e. domain analysis) through the complete software

development life cycle. In order to do so the Feature Assembly Reuse Framework proposes to

specify variable software products (in terms of Feature Assembly models) by combining and

reusing (existing) software features accompanied with some of their relations and

dependencies. In the previous chapters, we have shown how the Feature Assembly Modelling

technique supports the modelling of well-structured and scalable feature models. In this

chapter, we focus on the feature reusability aspect provided by the Feature Assembly approach.

The Feature Assembly Reuse Framework answers our second research question RQ2,

particularly, RQ2.3, “How can the principle of modelling with reuse be introduced to feature

modelling”, by introducing feature reuse as part of the Feature Assembly modelling practice.

This involves two steps, firstly making the features available for reuse and secondly actually

creating new feature models by reusing these features. Therefore, once a product line is defined

by specifying its Feature Assembly models, the features in these models (together with their

product independent information) are stored in a “Feature Pool” for later reuse. This pool of

features allows for creating different product (lines) by reusing the features. In addition,

whenever an existing product line undergoes a change in its scope or requirements or a new

product is needed, new features can be introduced and added to the pool allowing it to

continuously grow and act as a repository of reusable features. In the next section, we will

discuss the motivation behind the Feature Assembly approach. Next, we explain the Feature

Assembly Reuse Framework for creating Feature Assembly Models by means of reuse. Finally,

we will conclude the chapter with an example based on the Quiz Product Line presented in

chapter 8.

9.1 Why Feature Assembly?

Feature Assembly is based on the principle of assembling products by assembling

parts, known in industry as assembly lines. The introduction of assembly lines in industry has

paved the way for mass production and mass customization leading to the high productivity of

today’s industry. Using the same principle in software development, mass production could be

achieved via reusability while mass customization could be achieved by introducing variability.

Chapter 9: The Feature Assembly Reuse Framework

146

The physical parts that compose the final product could correspond to software features in

software. Similar as for physical parts, varieties of a software feature may be possible. These

different varieties can be used for customizing the software products. It can be observed that

within a certain domain, many features are common and can be reused in more than one piece

of software. As an example, a spelling checker can be used in many different office products.

This observation makes Feature Assembly feasible in practice and yet even favourable.

Business-wise, this reuse of features could increase productivity and decrease the development

cost if anticipated from the start. Important to notice is that we aim for reuse of the software

features, and partial reuse of feature models (i.e. reuse of design artefacts). This reuse of

features will also propagate to reuse of the software artefacts that actually realize these features

(e.g., libraries, components, templates, classes, etc.), in this way enhancing the overall software

reuse process.

The principle of assembling a certain product from pre-existing artefacts has previously

been proposed in software engineering. However, in general the assembly is situated at the

code level. For example, Wang [2000] states “One of the essential characteristics of

engineering disciplines is to build a product by assembling pre-made, standard components”.

When we examine the reuse experience in Component Based Development (CBD) [Wang,

2000] [Heineman and Councill, 2001], we see that CBD is based on developing software by

composing pre-existing components. Furthermore, there is a separation between the

development of the components and the development of the software that will utilize these

components [Crnkovic et al., 2006]. This has called for creating self-contained components that

would then minimize the writing of code to only gluing code (code that glues the components

together). Although the idea of CBD did not achieve its merits in software development in

general, it has been a great success in some specific domains. For example (web) service-based

applications [Srivastava and Koehler, 2003] [Dustdar and Schreiner, 2005], and e-learning

applications [Menéndez and Prieto, 2008] are often built using a CBD approach. The reason for

this is that while the products developed are quite diverse, there is a minimum level of

commonality between the required capabilities allowing for a good opportunity for reuse.

Furthermore, reuse in a single domain is more successful due to the sharing of the same domain

knowledge. Therefore, the opportunity of finding reusable components is higher than that of

reuse between different domains. For example, in web services, applications are assembled

from a set of appropriate web services according to the functionality they provide. Web service

discovery and identification plays an important role in the success of the web service

composition approaches [Srivastava and Koehler, 2003]. Therefore, web services are annotated

with information on their usage; this description is then stored in a central web service registry.

To find a certain web service, the registry is inspected [Dustdar and Schreiner, 2005].

Revisiting the software product line development in practice, a software product line

often undergoes adjustments to meet the continuous changes in customer and market

requirements [Van Ommering and Bosch, 2002]. This results in widening the scope and

diversity of the products that the product line delivers. As the product line matures, its scope

may significantly widen due to the introduction of new features. This causes on the one hand a

decrease in the complete commonality (i.e. the features that are common to all members of the

product line), and on the other hand, an increase in the partial commonality (i.e. the features

that are common to a subset of the members of the product line) [Van Ommering, 2002]. This

scenario often results in setting up a series of product lines rather than one, and is the first

scenario for what is sometimes referred to as multiple product lines (see section 3.5 on multiple

product lines). Another relevant scenario defined by Bosch [2009] is when the diversity of the

product line increase and there is a need for openness to third party development. Bosch

referred to this as software ecosystems [Bosch, 2009], in which a company should make its

platform available for third party development. The focus of these works has been on

identifying the required architecture support for realizing such multiple software product lines.

Chapter 9: The Feature Assembly Reuse Framework

147

Feature Assembly allows extending the scope of a variable product or a product line (e.g., to

add new variants to existing features and add new features to the set of supported features) at a

modelling level. This is similar to the above-mentioned scenarios of multiple product lines but

focus is on supporting the (conceptual) modelling of evolving to a set of product lines (i.e.

multiple product lines). However, Feature Assembly allows to model different product lines (as

well as different products) from existing features by supporting reuse of features as early as the

domain analysis phase. Therefore, Feature Assembly allows creating a family of product lines

which all have clusters of common features. These product lines may have different purposes

and yield different applications (i.e. products).

As already mentioned, opportunity for reuse is higher among applications developed

for the same domain, as Frakes et al. [1998] state: “The domain-centred view of software

engineering recognizes that most organizations do not build completely new software

applications. Rather they build variants of systems within at most a few problem domains, or

business areas”. The same applies for companies developing variable products without

systematically adopting a product line technique, for example companies offering customized

versions of their products to different customers. Another example is companies delivering

customer specific products, these find a large amount of overlap between their different

delivered products and often see the need to productize their software to a product that holds

the necessary variability to be customized to fits the needs of different customers and markets

[Artz et al., 2010] [Leenen et al. 2012]. This accompanied with the fact of the continuous

increase in the product (line) diversity, as previously mentioned, puts companies in a situation

in which they produce different products with a high level of partial commonality. It could even

be the case that a company that started with one product line evolves to having multiple related

product lines, all of which have some common features but also new ones. These companies

have already identified points of variability and commonalities related to the domain, but need

to consider new customer requirements. These customer requirements may again have

commonalities as well as individual differences. It is important to reuse this information,

whenever there is a need for a new product (line).

Furthermore, adopting a reuse strategy at a domain analysis level paves the way for

reuse at later stages of the development (e.g., at architecture level and at code level). In this

case, we envision that making new products is an issue of assembling previously defined

features along with new features. Figure 9.1 shows an overview of this vision, staring with a

Product A, of which its building blocks (in this case features) are stored for later reuse (in a so-

called Feature Pool), Product B and Product C reuse some of the features of Product A and also

define their own features which are also stored in the Feature Pool for later reuse, and so on.

Figure 9.1: Overview of the Feature Assembly Process

Chapter 9: The Feature Assembly Reuse Framework

148

9.2 Overview of the Feature Assembly Reuse Framework

The Feature Assembly Reuse Framework is a conceptual framework for modelling with

reuse. It allows modelling variable software by assembling new features as well as previously

defined ones. While in traditional software reuse, the focus is on the reuse of physical software

artefacts, in Feature Assembly the focus is on reuse of features, i.e. design artefacts. The reuse

is about the features and their compositions as well as relations with other features that might

also be useful in a reuse setting. For example, a Questions feature may be reused in many

different applications such as a Quiz product line (QPL), an Exam product line, and a

Questionnaire product line. Therefore, since this feature was already analysed and modelled for

the QPL (please refer to sections 8.2.1 and 8.2.3 for the analysis of the Questions feature) we

can reuse this feature for the Exam, and Questionnaire product lines. The reuse adopted in

Feature Assembly is actually a partial reuse of previously defined Feature Assembly models.

Note that when we reuse Questions, we reuse it together with its option features and some of its

dependencies. For example the dependency: Questions requires Question Authoring could hold

for all applications using the Questions feature.

Furthermore, reuse of models paves the way for reuse at the component level.

Therefore reusability is considered very early in the development life cycle without actually

being an overload in the development process. Taking reusability into account at the design

stage is complementary to reuse at the component level and could enhance the reusability of the

components.

The Feature Assembly Reuse Framework supports creating Feature Assembly models

for variable software (aka software product lines) by assembling features from a continuously

growing repository of features, called the “Feature Pool”, as newly defined features are added

to the Feature Pool, allowing the pool of features to continuously grow and evolve over time.

To achieve this, the Feature Assembly Approach is adopting a hybrid methodology that

combines both a top-down and bottom-up design approach. It is well known that top-down

design approaches allow decomposing large systems into smaller parts allowing to better

understanding and model each part. For variable software, this decomposition process also

includes variability (as already mentioned in chapter 6). In a bottom-up design approach,

system parts are put together to build up a larger system. In order to do so, there needs to be

some form of awareness on the existence of these parts and knowledge of their capabilities.

This also addresses one of the limitations of mainstream feature modelling techniques, i.e.

adopting a top-down hierarchical modelling approach (see L1.4, section 5.1.1 for more details)

Figure 9.2 shows an overview of how the Feature Assembly Reuse Framework works.

A company
49

 starts with one product (line) Variable Product 1, and uses the Feature Assembly

Modelling technique to model this product (line). Reusable features will be stored in the

Feature Pool. Later on, when a second product (line) is needed, Variable Product 2, features

from the Feature Pool can be reused.

49

 Note that the company can also start by developing a software product line (instead of a single

product) and later on develop a second product line.

Chapter 9: The Feature Assembly Reuse Framework

149

Figure 9.2: Feature Assembly Reuse Framework Overview

9.3 The Feature Pool

The Feature Pool is a repository of features or rather feature specifications, allowing

reusing features in more than one product (line). It acts as a continuously growing central

storage for all the features of the software products developed within the organization. The

feature pool may hold features with different granularity levels and belonging to different

products and different perspectives. Features in the feature pool do not represent code but are

rather abstract representations of software functionalities or characteristics (see chapter 6 for

the definition of feature). Furthermore, the features are stored together with meta-data

describing them and crucial for being able to identify later on potential features for reuse. These

meta-data include keywords to characterize the feature, and an informal description of the

feature. The features are stored together with their Feature Assembly model (part) that specifies

their composition and their possible contribution to variability. To allow reusing features from

Feature Assembly models, the Feature Assembly Modelling technique (FAM) already

anticipated to an important reusability principle, i.e. the modularity principle stating that

components to be reused should be cohesive and loosely coupled. As already mentioned in

chapter 6, a feature is defined based on whether it represents a concrete capability provided by

the product (line) (i.e. concrete feature) or as a specification of some abstract capability

(i.e. abstract feature). How a feature contributes to the variability of a specific product (line) is

not inextricably associated with the feature. This information is represented by the cardinality

part of the Feature Assembly model in the case of abstract features, and represented by the

Chapter 9: The Feature Assembly Reuse Framework

150

composition type (i.e. optional or mandatory) in the case of concrete features. Therefore, the

feature specification itself can be reused in another context where the variability may be

different.

Figure 9.3: Feature Pool meta-model

Figure 9.3 shows the meta-model of the Feature Pool (also including meta-data).

Features stored in the Feature Pool are extracted from the Feature Assembly models that

represent the features of a certain product (line) (in a certain domain). Features in the feature

Pool should be self-contained and define a capability or characteristic by themselves.

Self-contained means that the feature can exist independent of its parent feature when part of a

feature composition (i.e. it is a consolidated feature). We represent this property with the

standalone flag, as shown in figure 9.3. Abstract features as well as concrete features can be

stored. Features are extracted along with only the basic composition relations. Furthermore,

each feature has a description that identifies what the feature does and the rationale behind it. It

is also associated with a set of keywords to characterize the feature. These are very important

for the sake of being able to retrieve features from the feature pool. A feature is also associated

with two types of stakeholders, the stakeholders that ‘use’ the feature and the one that has

defined the feature (i.e. the owner of the feature). Stakeholders may use a feature for example

for defining another feature or because the functionality provided by the feature is associated

with the functionality of their own features. A feature also has a definition date. Furthermore,

the features are associated with their feature dependencies (requires, uses, excludes, and same),

however for each dependency a flag, Enforced Dependency, indicates whether the dependency

needs to be enforced when the feature is reused or not. Indeed, some dependencies will only be

needed in some contexts (e.g. because they are business constraints) then these dependencies

Chapter 9: The Feature Assembly Reuse Framework

151

are not saved to the Feature Pool, because they change according to the context in which the

feature is used, while others will always hold (e.g. domain constraints) therefore these should

be part of the information stored with the features in the Feature Pool. In addition, the Reason

property is also associated with the feature dependencies stored in the Feature Pool so that the

rationale of the dependency is not lost. Similarly, the Owner is stored. It should be noted that

the set of meta-data defined here can be extended and adapted depending on the needs of the

company for which the feature pool is created.

In the Feature Pool, we also keep track of the perspectives in which the feature is

defined or used. For a perspective, we maintain the following properties: definition date,

(Owner) Stakeholder, Description and Keywords. Furthermore, each perspective is linked to the

product (line) in which it was defined.

9.3.1 Feature Pool Example

To illustrate how the features are extracted and stored into the Feature Pool we show

this process for an excerpt of the System perspective for the QPL (shown in figure 9.4).

Figure 9.4: Excerpt of the System perspective Feature Assembly Model for the QPL

First we identify those features that are standalone; those represent candidate features

to be added into the Feature Pool. Standalone features maybe concrete features that are added

along with their compositions or abstract features that are added with their option features

Chapter 9: The Feature Assembly Reuse Framework

152

(variants). Note that not all features will be added to the Feature Pool, nor all relations; features

that are very specific to a certain application will not be added. In this example, such features

are Quiz PL, which represents the quiz application; Utilities, which is a conceptual grouping of

the utilities supported by the QPL; and Quiz Question Generator, which is very specific to the

Quiz application.

Abstract features that will be added (with all their variants) to the Feature Pool are:

Publish, Layout, Questions, Reports, Operation Mode, License, and Question Editor; these are

all marked as standalone features (i.e. standalone property is set to ‘true’). This is shown in

figure 9.5. Note that no cardinalities are added, as the cardinality is usually problem specific.

Concrete features that will be added to the feature pool are: Quiz Settings, Equation Editor,

Generate Certificate and Randomize which are all standalone features (i.e. standalone property

is set to ‘true’). Note that Generate Certificate is a standalone feature composed of other non-

standalone features (Display Certificate, Print Certificate and Email Certificate) and therefore

they are also added to the feature pool under their parent feature (but with the stand-alone

property set to ‘false’). Furthermore, while the Utilities feature itself was not added to the

Feature Pool, the features Equation Editor and Quiz Settings where added to the Feature Pool,

this is because these two features represent standalone functionality that can be reused on its

own, independent of the application. The corresponding extracted Feature Pool is shown in

figure 9.5; note that it represents clusters of features within the domain.

Figure 9.5: The Feature Pool Features Extracted from the QPL FAM of Figure 8.3

In terms of feature dependencies
50

, the following dependencies are added (note the

Enforced property associated with each feature dependency):

 Simple OM excludes Matching, Enforced: True

50

 Please refer to section 8.2.1 for the complete list of feature dependencies.

Chapter 9: The Feature Assembly Reuse Framework

153

 Simple OM excludes Fill the Blank, Enforced: True

 Simple OM excludes Sequencing, Enforced: True

 Self Assessment OM excludes Single User, Enforced: False

 Exam OM excludes Single User, Enforced: False

Some feature dependencies are not added to the Feature Pool because they represent

business/application constraints rather than domain constraints, such as: Single User excludes

CD, and Simple OM requires HTML.

9.4 Assembling Features with Feature Assembly

As already mentioned the Feature Assembly Reuse Framework is a conceptual

framework to create Feature Assembly models by reusing already existing features as well as

new features. The process of the Feature Assembly approach is shown in figure 9.6, the

following steps are identified:

1. Analyse New Variable Product: when a new product line (or even product) is

required, the product (line) requirements are analysed to determine the new product

(line) variability and commonality (as already mentioned in section 6.2).

2. Identify Required Features: the main features that characterize the product (line)

should be identified. It should be investigated (e.g., via searching the Feature Pool)

whether these features have been defined before (and therefore they already exist in the

Feature Pool) or whether they are new and thus need to be further analysed. For

existing features proceed to step 3, for new features proceed to step 4.

3. Extract Existing Features from the Feature Pool: Existing features are extracted

from the Feature Pool (with their descendants). In addition, feature dependencies that

govern these features should be extracted. The enforced properties should provide

information on whether the dependency must hold or whether it is optional to include

it.

4. Define New Features: new features are defined following the Feature Assembly

Modeling technique, with the appropriate level of detail.

5. Create Product Feature Assembly Models: build up the Feature Assembly models

that represent the required new product (line) combining both the new features and the

existing ones.

6. Add New Feature to Feature Pool: populate the Feature Pool with the newly defined

features along with their details as explained in the previous section

Chapter 9: The Feature Assembly Reuse Framework

154

Figure 9.6: Feature Assembly Process

To guide the modeller on appropriate feature reuse possibilities we define the following

set of reuse rules:

1. Perspectives need to be respected: when selecting features from the Feature Pool, the

perspectives should be respected. This is because the semantics of the concept feature

is different in different perspectives. For example, a Spelling Check feature in the

Functional perspective indicates the functionality of checking the spelling. While a

Spelling Check feature in the Graphical User Interface perspective indicates the visual

appearance of the spelling checker. Therefore, the modeller should be careful when

mixing features from different perspectives when reusing them; i.e. it is up to the

modeller to maintain the semantics of the feature when reusing it.

2. Reuse of abstract features: abstract features may be extracted with one or more of

their option features. Furthermore, new variants can be added to the set of allowed

specifications (i.e. option features) of an abstract feature. When reused a cardinality

(minimum and maximum) is attached to the feature.

Chapter 9: The Feature Assembly Reuse Framework

155

3. Reuse of option features: an option feature in the Feature Pool (i.e. a variant feature)

must be reused within the context of its parent (abstract) feature. An option feature is a

specification of a certain (abstract) concept. Reusing the option feature together with

the parent abstract feature helps maintaining this semantics. Furthermore, keeping this

information allows to later on expand these abstract concepts with more specifications

(either from the Feature Pool or with new ones) when needed.

4. Reuse of concrete features: when reusing concrete features their decomposition

should be respected, i.e. all mandatory decomposition relations should be taken over,

while optionally decomposition relations may be arbitrary transformed into mandatory

relations or reused as they are or omitted.

We demonstrate these rules in the example below.

9.4.1 Feature Assembly Example

To illustrate how one can make use of feature reuse in Feature Assembly, consider the

need for developing an Exam product line (Exam PL). The Exam product line is an application

oriented for developing exams. Two types of Exams should be supported, simple exams and

more advanced exams that contain advanced features such as multimedia associated with the

questions. Two types of question editors should be supported, a simple editor, and an advanced

editor.

Some features defined in the Quiz product line are applicable for reuse while others are

only partially applicable. Using the Feature Assembly approach, the reusable features are

looked-up and extracted from the Feature Pool. Features defined for the Quiz product line and

applicable in the Exam PL include: Reports, License, Questions, Randomize, Score, Operation

Mode, Publish, Equation Editor and Layout. This set of features includes some abstract features

and some concrete ones. Figure 9.7 shows the Feature Assembly model for the System

perspective of the Exam PL application; already existing features are shown in red text.

Abstract features are extracted with some of their option features: the ones that are applicable

for the Exam PL. For example, the Layout feature is extracted from the Feature Pool associated

with two of its variant features Template Based and Custom. The Layout feature is also

associated with a new cardinality based on the new situation, a minimum of one and a

maximum of two, as shown in figure 9.7. Similarly, the abstract feature Operation Mode is

reused associated with only two of its possible variants, the features Simple OM and Exam OM;

a minimum of one and a maximum of two is specified. The feature Reports is reused with only

two of its variants Admin Reports and Test Result Report, a minimum of one and a maximum of

two is specified. The Publish feature is reused with only two option features associated to it,

Flash and HTML. Furthermore, the Question Editor feature is reused as it is with two variants

specified, Simple Editor and Rich Editor. Similarly, the Score feature is used as is.

Furthermore, new variants can be associated with already existing (i.e. in the Feature

pool stored) abstract feature. In that case, these newly defined variants are added to the Feature

Pool as new option features of that abstract feature. For example, the abstract feature Question

Multimedia is reused with all its option features; in addition, a new option feature Question

Sound Effects is also defined. The cardinality associated with the feature is a minimum of one

and a maximum of four. Similarly, a new option feature Essay is added to set of option features

associated with the Questions feature.

Chapter 9: The Feature Assembly Reuse Framework

156

Figure 9.7: Feature Assembly Process

Concrete (standalone) features of the QPL are also reused (together with their

decomposition defined for the QPL), because they are also applicable for the Exam PL. For

example, the concrete feature Equation Editor is reused as an optional part of the Exam PL.

Note that although Equation Editor was an option feature of the Quiz Utilities feature in the

QPL, it was defined in the Feature Pool as standalone and therefore it could be reused without

having to reuse its parent feature. The Generate Certificate feature (with all of its

decompositions) is also reused, this time it is used as a mandatory part (as shown with a thick

line in figure 9.7), while it was used as an optional feature in the QPL) of the Exam PL.

Additionally, the feature Randomize is reused, with only its mandatory part, but two new

optional sub-features of Randomize were added: Randomize Subset, which allows to randomize

a subset of the questions, and Randomze Choices which allows to randomize the choices of the

multiple choice questions.

In addition to the existing features, some new features were required for the Exam PL,

such as the abstract feature Timer, which has the concrete option features Question T, and Exam

T (which represent question timer and exam timer respectively).

It is clear in figure 9.7 that the number of red features, i.e. features reused from the

Feature Pool exceeds the black features, i.e. newly defined features. It illustrates the flexibility

of the Feature Assembly Modelling technique, which allows to reuse features while allowing

them to contribute differently to the variability of a system. The newly added features should be

added to the Feature Pool so that they are available to future developments.

Chapter 9: The Feature Assembly Reuse Framework

157

9.5 Summary

In this chapter, we have presented our second major contribution of the thesis which is

the Feature Assembly Reuse Framework that allows combining both variability and reusability

at the design level by supporting the principle of feature modelling with reuse. The Feature

Assembly Reuse Framework is a conceptual framework for creating feature models using

already existing features as well as new features. The underlying principle was already adopted

in industry and has led to establishing several parallel product lines reusing features from one

another, thus increasing productivity. We adopt the same principle for defining variable

software. We argue that the “feature” is an appropriate artefact to support this type of reuse.

Features are stored in a repository of features, referred to as the “Feature Pool”. The

framework supports the population of the Feature Pool with existing features as well as newly

defined ones, and this leads to the continuous growth of the Feature Pool. The Feature

Assembly Reuse Framework supports the creation of Feature Assembly models by reusing

already existing features and defining newly required features. The newly defined features are,

in turn, added to the Feature Pool. Additionally, we have demonstrated the approach with an

example. We have shown which features defined for the QPL are reusable and can be added to

the Feature Pool. We have also demonstrated how these features could be reused for quickly

defining the Feature Assembly models of a new product line, the Exam PL.

158

Chapter 10: Feature Assembly Knowledge Management Framework

159

Chapter 10

Feature Assembly Knowledge Management

Framework

In chapter 6, we have presented the Feature Assembly Modelling technique used to

model software variability. We also presented the Feature Assembly Modelling language,

which uses a graphical notation for modelling variable software. Feature Assembly models

represent information concerning the features composing a variable product in addition to their

variability and commonality. In addition, they hold information about feature interactions and

dependencies. Therefore, they might help practitioners understanding and analysing the sources

of complexity in their products as well as the sources of variability. When developing new

products, various decisions need to be made concerning the features to be supported, the level

of complexity supported, the coupling between features, the feasibility of the variability

introduced, etc. Furthermore, variable software development is often faced with the challenge

of change. Giving its complexity and often its large size, supporting the ability to change

becomes a major concern. Change could be either changing existing features, adding new

features, or refining existing ones. In these situations, Features Assembly models may be of

great value as they allow tracing the impact of a change. For example, changing a feature may

affect its composition, as well as its dependencies with other features. Therefore, it may lead to

changes to other features that are dependent on the feature changed. In this chapter, we provide

an answer for our third research question RQ2, How can the knowledge in feature models and

features be captured and unlocked?

Feature Assembly models represent and document product information and in this way

might establish a better communication between different stakeholders
51.

 Nevertheless,

although information is explicitly represented in the Feature Assembly models, they are still

quite difficult to understand for non-modellers, and if models are stored as a whole it is not

possible to query them for individual pieces of information and relate and combine information

in different models. This becomes even more important for large products with many

perspectives, many features, many feature-to-feature dependencies, and many stakeholders

involved. This calls for a machine understandable representation of the Feature Assembly

Models. Also, the consistency of the feature dependencies is difficult to check manually, with a

machine understandable representation this could be automated. Therefore, firstly we need to

answer the question RQ2.1, how can the knowledge in feature models and features be

captured? Secondly, we need to answer the question RQ2.2, how can communication and

information sharing between the different stakeholders be supported in order to comprehend

and find information concerning the features of the system, their dependencies, and variability?

51

 Stakeholders are users that need this information in the SPL’s life cycle, both in domain engineering

and application engineering (e.g. sales persons, product managers, marketing persons, developers, etc.)

as discussed in section 5.2.

Chapter 10: Feature Assembly Knowledge Management Framework

160

 In this chapter, we answer these questions by providing a knowledge representation of

Feature Assembly models. The purpose of this representation is to allow easy and flexible

knowledge discovery in Feature Assembly models. Additionally, such a representation can act

as a formal documentation that can be made available according to the needs of the different

stakeholders during the product’s life cycle. This knowledge representation is realized by

mapping the Feature Assembly Modelling technique (provided in chapter 6) to an ontology that

defines the concepts and semantics of the Feature Assembly Modelling technique. We call this

ontology the Feature Assembly Model Ontology (FAM ontology). Firstly, we point out the

merits of adopting an ontology-based knowledge representation technique for representing the

information represented by Feature Assembly models, we present the FAM ontology and the

rules that allow capturing Feature Assembly models (which answers our research question

RQ2.1). Secondly, we provide the two possible scenarios for users to search for knowledge in

the FAM Ontology, namely knowledge browsing and knowledge querying; we also show how

the two can be combined in one dedicated browser that allows for knowledge querying and

browsing while visualizing the information in the FAM notation (which answers our research

question RQ2.2). We also provide some examples.

We also apply the same knowledge representation technique to define an ontology for

the Feature Pool, called the Feature Pool Ontology (FP Ontology). The FP ontology is actually

an excerpt of the FAM ontology as will be explained in section 10.3.

10.1 Overview

In order to provide a machine processable representation for our Feature Assembly

models, we used the concept of ontology. This ontology, called the Feature Assembly Model

Ontology or FAM Ontology, provides a conceptualization of the concepts and semantics of the

Feature Assembly Modelling technique. In other words, the FAM Ontology provides a meta-

model for Feature Assembly Models.

Figure 10.1: Overview of the Feature Assembly Knowledge Representation Framework

Chapter 10: Feature Assembly Knowledge Management Framework

161

We have opted for an ontology, as software is available for ontologies to infer new

knowledge from the existing knowledge. Furthermore, they allow reusing and extending the

represented information. The reasoning support for ontologies can be used to check the

consistency of the Feature Assembly models and to infer implicit information from the models.

For this, we will use rules. Figure 10.1 shows the Knowledge Representation framework we

defined for representing and manipulating Feature Assembly Models. At the meta-level both

the FAM Ontology (TBox) (this will be covered in section 10.2.1) and the FAM SWRL Rules

(this will be covered in section 10.2.2) are defined. The FAM SWRL Rules ensure the logical

consistency of defined Feature Assembly models (i.e. the Abox). A Feature Assembly

knowledge base exists when instances (i.e. individuals forming the Abox) of the ontology

concepts are defined to represent specific Features Assembly models (as shown in figure 10.1)

(this will be covered in section 10.2.3). A reasoner checks the consistency of the ontology and

runs the SWRL rules against the ontology. The details of this framework will be explained in

the next sections. Note that the Feature Assembly models are stored in one central repository

and their relationships and overlapping concepts are represented explicitly (i.e. intra-

perspective dependencies and features that belong to more than one perspective).

10.1.1 Why OWL?

We chose the Web Ontology Language (OWL) to represent our FAM Ontology.

Particularly, we use the DL variant of OWL. OWL was chosen for the following reasons.

Firstly, OWL ontologies are very popular these days for representing knowledge and many

tools exist to support them, including tools for browsing, visualizing, querying and editing the

ontology. Furthermore, activities such as knowledge sharing and collaborative activities are

supported in these OWL supporting tools. OWL is a standard language making ontologies

created using OWL sharable (on the web).

Secondly, OWL has constructs that allow gluing together information (e.g.,

owl:sameas), this is particularly important for obtaining the overall picture of the different

Feature Assembly Models defined in the different perspectives. In addition, OWL supports the

Open World Assumption (OWA)
52

 making it possible to reason on incomplete information.

This is particularly important for allowing the representation and reasoning of incomplete

feature assembly models. Therefore, allowing to reason on models of individual perspectives,

as well as on the perspectives integrated. This allows different teams to work independently or

negotiating and iterating over their models during integration.

Thirdly, OWL (DL) was designed to support DL reasoning on top of the ontology

model. This enables using DL reasoners to infer knowledge and using rules implemented in

SWRL to deduce new knowledge and to validate the models (for example validating that no

conflicting dependencies exist in the models). We selected the DL dialect of OWL because it is

both sound and complete (we only use DL safe SWRL rules).

For the implementation of both the FAM Ontology and the FP Ontology we used the

Protégé OWL
53

 ontology editor. For browsing the FAM ontology we used the jOWL Ontology

browser
54

. We query the ontology using OWL2Query
55

 (plugin for Protégé), a query engine for

SPARQL-DL. The reasoning is done using the Pellet
56

 reasoner.

52

 In OWA the lack of a given assertion or fact being available does not imply whether that possible

assertion is true or false, it simply is not known. In other words, lack of knowledge does not imply falsity.
53

 Protégé OWL: http://protege.stanford.edu/overview/protege-owl.html
54

 jOWL Ontology Browser: http://jowl.ontologyonline.org/jOWLBrowser.html

http://jowl.ontologyonline.org/jOWLBrowser.html

Chapter 10: Feature Assembly Knowledge Management Framework

162

10.2 The FAM Ontology

The FAM Ontology acts as a DL logic conceptualization of the Feature Assembly

Model specification, i.e., the ontology defines the concepts and relationships defined for the

Feature Assembly Modelling, namely: features, feature relations, feature dependencies and so

on. In addition, the ontology also defines constructs that identify variability, i.e. variation

points and variants. An OWL ontology expresses knowledge in terms of classes, properties and

restrictions. Classes represent domain concepts or objects. Ontology development steps include

the following phases based on the iterative engineering approach defined by Noy and

McGuinness [2001]:

1. Define the concepts of the domain of discourse as classes in the ontology.

2. Arrange the classes in a taxonomic (subclass–superclass) hierarchy.

3. Define object properties (i.e. roles between different concepts) and describe allowed

domains for these properties.

4. Define data properties (if any) and describe allowed domains (types) for these

properties.

These steps represent actually a conceptualization of the domain of discourse.

However, we have already done this conceptualization when defining our Feature Assembly

Modeling approach. The result was the feature Assembly Meta Model (given in section 6.5 and

shown again in figure 10.2), which defines the concepts in our domain of discourse. Conceptual

data models and ontologies are quite similar, as both consist of conceptual relations and rules

[Spyns, 2005]. Rules constrain how the concepts relate to each other, the restrictions that could

hold on properties (called roles in ORM), and define inference guidelines. Several works show

the relation between ORM conceptual modelling techniques and ontology engineering [Jarrar et

al., 2003] [Spyns, 2005] [Keet, 2007], having identified the key concepts (in terms of ORM

facts and roles) and how they relate, we base our mapping on these works.

We use the mapping defined by Keet [2007], to convert the conceptual model into an

ontology:

1. Every non-lexical object type (solid ellipse in the conceptual meta-model of figure

10.2) is mapped into a concept in the ontology, i.e. an OWL class.

2. Subtypes in the conceptual meta-model are mapped to subclasses in the ontology to

define the class hierarchies. If subtypes have an exclusion constraint in the conceptual

model, it maps to a disjoint constraint between the subclasses in the ontology. Note that

disjointness needs to be explicitly defined in OWL

3. Binary relations between two object types are mapped to properties between the two

corresponding classes in the ontology.

4. Concepts defined by lexical object types (dashed line ellipse in the conceptual model of

figure 10.2) where the values are not constrained, are mapped to data-type properties in

the ontology if they represent free from data.

5. Concepts defined by lexical object types where the values are constrained to specific

values are mapped to sub-properties the object type to which the lexical object type is

connected.

55

 OWL2Query: http://protegewiki.stanford.edu/wiki/OWL2Query
56

 Pellet: http://clarkparsia.com/pellet

Chapter 10: Feature Assembly Knowledge Management Framework

163

6. Each ORM relationship between two non-lexical object types represents a predicate

connecting the object type, one predicate for directions. In OWL a property links two

classes, the direction is based on the domain and range identified. Therefore, we select

only the most significant predicate of the two and define it as an object property linking

the two corresponding classes. Thus, we only represent one of the two roles of the

relationship by means of a property with domain the class derived from the object type

that holds this role, and range the class derived from the object type it relates to.

Figure 10.2: FAM Meta-Model

The result of this mapping is shown in figure 10.3, which is a visualization of FAM

Ontology concepts and how they relate to each other in terms of domain and range relations.

The different relations between the classes will be explained in more details in the next section.

Concepts in the FAM meta-model which denote domain concepts are represented as

OWL classes. Concepts in the FAM meta-model which denote domain relations are represented

as OWL properties. In OWL, all classes are a subclass of the owl:Thing class. Abstract

concepts are used to create a taxonomy of the related concepts. For example, the abstract

concept Feature is mapped to a class Feature that has three sub-classes defined,

Abstract_Feature , Concrete_Feature and Option_Feature which refer to the concepts

Abstract Feature, Concrete Feature and Option Feature respectively. The Perspective concept

is mapped to the class Perspective in the ontology. Similarly, the concept of Cardinality is

mapped to the class FCardinality in the ontology. The concepts of Variation Point and

Variant are actually sub-concepts of the concept Variability. Mapping this to the ontology, we

Chapter 10: Feature Assembly Knowledge Management Framework

164

define a Variability class which has two subclasses Variant and Variation Point.

Furthermore, as already mentioned in chapter 6, a feature is associated with a binding time and

a stakeholder which can be either the owner of the feature or a user of this feature. We

therefore define these concepts in the ontology by two classes, Binding Time and

Stakeholder respectively. The FAM Ontology also defines a Priority concept, represented by

the Priority class, to define how important the feature is. This is added to support decision

making at later stages.

Figure 10.3: Corresponding FAM Ontology Meta-Model visualized by OntoGraf

10.2.1 The FAM Ontology Vocabulary

In this section, we provide a more detailed discussion on the structure of the FAM

Ontology
57

. As already mentioned, the ontology is represented by a set of classes that represent

the Feature Assembly Modelling concepts. Additionally, the FAM Ontology also holds a set of

properties that map the relations between the different classes and therefore establish a link

between the concepts of the ontology (as shown in figure 10.3). These properties represent the

feature relations and dependencies defined in the Feature Assembly Modelling technique.

Within the FAM Ontology, each property is restricted to connect two specific classes. This

restriction is defined by the domain and range characteristics of OWL properties. The domain

holds a class description of the class(s) the property belongs to. The range holds a class

description of the allowed classes this property can refer to (i.e. link to).

For each FAM concept defined in the FAM Ontology, we describe its class restrictions,

properties, and property restrictions. We also provide how it is formally defined in OWL by

means of Description Logic (DL) syntax
58

.

57

 Appendix B shows the complete FAM Ontology represented in OWL Functional syntax.
58

 In this section we use DL to represent the formal semantics of the FAM ontology’s TBOX in addition

to the equivalence in OWL whenever a logic formula is used. This is because the DL syntax is more

compact to use and more common in ontology modelling. Every OWL DL axiom has an equivalent DL

representation, for more information about this representation please refer to OWL Web Ontology

Chapter 10: Feature Assembly Knowledge Management Framework

165

1. Feature:

The class Feature has two object properties that relate to the stakeholders:

has_Stakeholder and has_Owner, both object properties have domain Feature and

range Stakeholder (as represented by axioms 1 and 2). The has_Stakeholder object

property refers to the stakeholders involved with the features; we represent this with an

allValuesFrom
59

 restriction on the has_Stakeholder property (as represented by

axiom 3). The has_Owner object property refers to the owner of the feature; each

feature can only have at most one owner. To denote this we define a cardinality

restriction of maximum one on the has_Owner object property (as represented by

axiom 4). These facts are defined as follows:

 … (1)

 … (2)

 … (3)

 1 … (4)

 1 … (5)

 1 … (6)

Listing 10.1: DL Axioms Representing the Feature Class

The Feature class is also associated with a description via the

has_Description data property, which has domain Feature and range the String

data type. Furthermore, the has_Binding_Time object property identifies the binding

time of a certain feature. The has_Binding_Time time property has domain Feature

and range Binding_Time. Furthermore, a feature may not be associated with more

than one binding time, this restriction is maintained by defining the has_Binding_Time

property as functional, i.e. as an owl:FunctionalProperty (represented by axiom 5).

The has_Priority object property associates a priority to a feature. Similar to the

binding time, a feature cannot be associated with more than one priority, therefore, the

has_Priority property is defined as an owl:FunctionalProperty (represented by

axiom 6).

The set of feature dependencies defined in FAM (i.e. feature-to-feature

constraints) are applicable to any type of feature and therefore they are defined as part

of the Feature class properties. We define an upper level object property FTFC (Feature

To Feature Constraint) which groups all the feature dependencies. The object property

FTFC and all its sub-properties have domain Feature, and have range Feature

(represented by axiom 7). The FTFC sub-properties are: excludes, requires, and

uses; they are defined in OWL FAM Ontology as follows (as shown by axioms 8 to

10):

 requires: is defined as an owl:TransitiveProperty to represent the

transitivity of this property.

Language Semantics and Abstract Syntax [http://www.w3.org/TR/owl-semantics/]. Appendix C shows

the OWL DL to Description Logic semantics mapping.

59

 allValuesFrom Universal Restriction describes classes of individuals that for a given property only

have relationships along this property to individuals that are members of a specified class.

someValuesFrom Existential Restriction describes classes of individuals that participate in at least one

relationship along a specified property to individuals that are members of a specified class.

Chapter 10: Feature Assembly Knowledge Management Framework

166

 excludes: is defined as an owl:SymmetricProperty to represent the

symmetry of this property.

 uses: is defined as an owl:TransitiveProperty to represent the transitivity of

this property.

 …(7)

 …(8)

 …(9)

 …(10)

Listing 10.2: DL Axioms Representing the Feature Dependencies

Furthermore, the same feature dependency of FAM, is represented by the

owl:sameAs owl property, which allows two or more instances to be treated by the

reasoner as the same individual. The owl:sameAs property is symmetric by default.

In order to add the feature dependency Reason property we have extended the

OWL annotations with the following annotations: Dependency_Reason and

Dependency_Owner. This allows us to define textual rationale to the dependency

assertion axioms (more on this in section 10.2.3).

A feature is linked to a certain perspective via the belongs_To object property.

belongs_To has domain Feature and range Perspective (as represented by axiom

11). A feature may belong to more than one perspective.

 …(11)

2. Abstract_Feature

The class Abstract_Feature is a subclass of Feature (as represented by axiom 12).

It has a has_Option object property, which links the abstract feature to its

corresponding option features. The has_Option property has domain

Abstract_Feature and has range Option_Feature (as represented by axiom 13).

Furthermore, an allValuesFrom restriction on the has_Option property restricts it to

only values of type Option_Feature (as represented by axiom 14). An abstract feature

is associated with a cardinality via the has_Cardinality property. An abstract feature

cannot be associated with more than one cardinality, therefore, the has_Cardinality

property is defined as an owl:FunctionalProperty (as represented by axiom 15).

 …(12)

 …(13)

 …(14)

 1 …(15)

Listing 10.3: DL Axioms Representing the Abstract Feature Class

Chapter 10: Feature Assembly Knowledge Management Framework

167

3. Concrete_Feature

The class Concrete_Feature is a subclass of Feature (as represented by axiom 16).

It has a Composition object property, which groups the different types of compositions

allowed by a concrete feature (the mandatory composition and optional composition).

Therefore, the composition object property has two sub-properties namely:

mandatory_Composition and optional_Composition (as represented by axiom 17).

A concrete feature is allowed to be composed of concrete features and abstract features

which are not option features (this is represented by axioms 18 and 19).

 …(16)

 …(17)

 …(18)

 …(19)

Listing 10.4: DL Axioms Representing the Concrete Feature Class

4. Option_Feature

The class Option_Feature is a subclass of Feature (as shown by axiom 20). It has

an option_Of object property which refers to its parent abstract feature. The

option_Of object property is the inverse property of the has_Option object property of

the Abstract_Feature class (as shown by axiom 21); this property is defined to

facilitate the querying. As already mentioned (please refer to chapter 6), option features

indicate choices or alternatives (based on the associated cardinality), therefore they

represent variants of a certain variation point (i.e. of their parent abstract features). We

represent this by defining Option_Feature as an equivalent class for the Variant

class (as shown by axiom 22).

 …(20)

 …(21)

 …(22)

Listing 10.5: DL Axioms Representing the Option Feature Class

5. FCardinality

The class FCardinality defines the feature cardinality associated with abstract

features. As already mentioned, each abstract feature should be associated with a

cardinality that states the minimum and maximum number of features allowed in a

valid configuration. To map this into the ontology, we have defined two data properties

max and min associated with the FCardinality class (i.e. have domain

FCardinality); max represents the maximum cardinality and min represents the

minimum cardinality; both are define as literals (as represented by axiom 23).

Chapter 10: Feature Assembly Knowledge Management Framework

168

 ar ina ity ar ina ity …(23)

6. Perspective

The class Perspective is a high level class that groups all possible perspectives. A

specific perspective is an instance of this class (or any of its sub-classes). The FAM

Ontology defines the following types of perspectives as subclasses of the Perspective

class: System, User, Functional, Graphical_User_Interface, Task,

Hardware_Interface, Localization, Non_Functional, and Persistent.

7. Stakeholder:

The class Stakeholder is a high level class that groups all possible stakeholders. A

specific stakeholder is an instance of this class. The FAM Ontology defines the

following type of stakeholders as subclasses of the Stakeholder class: Marketing,

Modeller, Sales, Testers, Business_Analyst, Client, Developer, and

Domain_Expert. The FAM Ontology provides this classification for stakeholders, but

if a different classification exists in another upper ontology or a different classification

is more appropriate it can be changed. Actual stakeholders are defined as instances of

these classes.

8. Binding_Time

The class Binding_Time represents the time of binding for the variability options of a

feature. A set of all the different possible binding times are defined as individuals (i.e.

instances) of the binding time class. The FAM Ontology defines the following binding

times: Analysis, Design, Compilation, Implementation, Installation,

RunTime, and StartUp.

9. Priority

The class Priority defines, as instances, all different possible priorities a feature may

have. The FAM Ontology defines the following instances of the Priority class:

Severe, Top, High, Medium, Low, and None.

10. Variability

The class variability is a high level class that groups the two types of variable

features namely variation points and variants. They are represented by two sub-classes

Variant and Variation_Point. As already mentioned, the class Variant is

equivalent to the class Option_Feature.

There are two cases to identify a feature as a variation point. In the first case, it

concerns an abstract feature that has some variants (i.e. option features). The second

case is when a concrete feature is part of an optional composition. To assign features

satisfying these conditions to the Variation_Point class, we define two SWRL rules

that capture these two cases. These rules are shown by axioms 24 and 25. Axiom 24

states that if x is a concrete feature, and it has an optional composition y then x should

be a variation point. Axiom 25 states that if x is an abstract feature, and it has at least

Chapter 10: Feature Assembly Knowledge Management Framework

169

one option feature y then x should be a variation point. Note that abstract features with

no option features assigned are not (yet) treated as a variation point.

 , ….. (24)

 , …. (25)

Listing 10.6: DL Axioms Representing the Rules that derive the Variation Points and Variants

Figure 10.4: FAM Ontology Class Hierarchy Shown in Protégé

Furthermore, in addition to the above-mentioned semantics, some additional Class

Disjoint restrictions are required because of the open world assumption used by OWL. These

are added to provide guidance to the reasoner while inferring new deductions. We use the OWL

disjoint class restriction owl:disjointWith to explicitly state the disjoint classes and therefore

indicate that individuals (i.e. concepts in FAM) cannot belong to more than one class from the

disjoint group. For example, Feature is disjoint with the following classes: Perspective,

FCardinality, Binding_Time, Stakeholder, and Priority. Similarly, Perspective is

disjoint with Feature, FCardinality, Binding_Time, Stakeholder, Variability and

Priority.

Chapter 10: Feature Assembly Knowledge Management Framework

170

Figure 10.4 shows a screenshot from the FAM Ontology in Protégé showing the

defined class hierarchy.

10.2.2 FAM Error Detection via the FAM Ontology

It is important to support the modeller as much as possible in creating feature assembly

models. Automatic error detection should be part of this. One of the benefits of using owl for

the FAM Ontology is owl’s inference capabilities, which are usable for identifying possible

modelling flaws. Modelling flaws should be highlighted to the modeller in order for him/her to

take the appropriate decisions for correcting them, as models with modelling flaws may lead to

invalid configurations.. It is important to support the modeller in detecting and understanding

sources of errors. As the size of the software grows, it becomes more and more difficult to spot

errors manually. Furthermore, using perspectives eases the modelling process of the individual

feature assembly models, but at the same time, it increases the complexity of the consistency

checking process. This is because the consistency of the overall model is determined by the

consistency of each perspective in addition to the consistency of the overall model (as already

mentioned in chapter 6).

An important advantage of our FAM ontology is that it allows integrating the Feature

Assembly models constructed for different perspectives into one model with no cost. That is

because a perspective is represented as a property of a feature in the FAM Ontology.

Furthermore, perspectives are related via intra-perspective dependencies. This is extremely

useful in the case of very large system and/or systems with many feature dependencies, as it

allows gluing together the different Feature Assembly models created in the different

perspectives. Furthermore, in the ontology there is no real distinction between inter-

perspective dependencies and intra-perspective dependencies, the only difference is whether the

two features involved in the dependencies coexist in the same perspective or not. This allows

considering feature dependencies irrelevant of their type (i.e. inter-perspective or intra-

perspective); therefore no extra computation is required.

Before elaborating on how we support error detection, let us consider a simple example

of an error. Consider the following set of feature dependencies:

FeatureA requires FeatureB (1)

FeatureB uses FeatureC (2)

FeatureC excludes FeatureA (3)

Listing 10.7: An Example Showing Possible Modelling Errors

Bearing in mind that requires and uses are transitive dependencies; dependencies (1)

and (2) yield that FeatureA, FeatureB, and FeatureC could exist in a valid product

configuration. While dependency (3) yields that FeatureA and FeatureC cannot co-exist

together. Therefore these sets of dependencies are contradictory, and actually lead to a semantic

inconsistency in the Feature Assembly models represented by the FAM Ontology individuals,

i.e. the ABox. It should be noted that the perspectives to which the features belong is in this

case not relevant. We call contradictory feature dependencies an inconsistency.

In order to support error detection, we have identified a number of common types of

errors that may occur in Feature Assembly models, and for which the FAM Ontology will

provide support:

 Cyclic Dependencies: this type of logical inconsistency results from cycles in the

Feature Assembly model. From a modelling point of view, these cycles imply that

Chapter 10: Feature Assembly Knowledge Management Framework

171

the features are not well defined (i.e. hold too much coupling) or are over-

decomposed. The cycles result from the feature dependencies that are asymmetric

properties (i.e. uses). For example, listing 10.8 shows a uses chain in axioms 1 to 3,

the chain is then closed by axiom 4 which results in FeatureA uses FeatureA.

FeatureA uses FeatureB (1)

FeatureB uses FeatureC (2)

FeatureC uses FeatureD (3)

FeatureD uses FeatureA (4)

Listing 10.8: An Example Showing a Cyclic Error

 Inconsistent Dependencies: these errors result from a logical contradictory or

from conflicting feature dependencies. This conflict will result in a wrong product

configuration or even prohibit finding a configuration at all. This is due to using

mutually exclusive feature dependencies, as already mentioned in chapter 6 this list

is: (requires, excludes), and (uses, excludes). The example given above (listing

10.7) is an example of an inconsistency.

 Redundant Dependencies: These “errors” result from using dependencies that

imply the same as some other feature dependencies specified. The larger the model

and the more people involved in the modelling, the more redundancy will be

introduced (usually accidentally). Redundancy is not a real error but is in general

considered as bad modelling practise and should at least be pointed out. Listing 9.9

shows an example, axioms 1 and 2 imply that FeatureA uses FeatureC, this makes

axiom 3 redundant with the conclusion provided by axioms 1 and 2.

FeatureA requires FeatureB (1)

FeatureB uses FeatureC (2)

FeatureA requires FeatureC (3)

Listing 10.9: An Example Showing Redundant dependency

 Cardinality Errors: For a cardinality, the minimum should not exceed the

maximum, if this is not the case then a cardinality error holds.

Note that the FAM ontology will not check for dead features. A feature is dead if it

cannot appear in any of the products of the software product line, for instance when a

mandatory feature excludes an optional feature, then this optional feature can never be selected

(i.e. is a dead feature). Therefore, in order to detect dead features, one must solve the constraint

problem represented by the Feature Assembly model; the feature(s) that do not appear in any

valid solution would then be marked as a dead feature(s) [Benavides et al., 2010]. The FAM

Ontology does not have the objective of finding solutions for this constraint problem; it is

rather a representation of it.

Although the above-mentioned situations could have been forbidden by the feature

assembly language definition, in practice this would result in a very stringent modelling

Chapter 10: Feature Assembly Knowledge Management Framework

172

process, which is not desirable. Modelling is an iterative process and so-called errors occurring

in one iteration may be left on purpose because they will be taken into consideration in a next

iteration. Therefore, we prefer not to check (or forbid) errors and flaws during the modelling

itself (e.g., by the modelling editor) but have it as a separate process. Using the FAM ontology

for detecting errors also allows providing the source of the error (see section 10.2.2.2) and thus

eases the finding of a solution.

In order to deal with errors we have defined a class Error in the FAM Ontology that

allow capturing the four different types of modelling errors mentioned. The Error class has

four subclasses that refer to the different error types captured, namely: Cyclic_Error,

Inconsistency, Redundancy, and Cardinality_Error. The class Cyclic_Error will hold all

the features that contain in their specifications a cycle between two features. We have defined

an object property cyclic, which captures a cycle between two features. The object property

cyclic is a symmetric property that has as domain and range the class Cyclic_Error. The

class Inconsistency holds all the features that contain in their specifications something that

leads to an inconsistency. Furthermore, an inconsistency usually occurs between two features

(e.g., in the above example the inconsistency was between FeatureA and FeatureC); therefore

we defined an object property inconsistent, which captures an inconsistency between two

features. Inconsistent is a symmetric property that has as domain and range the class

Inconsistent. Redundancy errors will be captured by the class Redundancy. Furthermore,

the object property redundant captures redundancy between dependencies of two features; it

has as domain and range Redundancy. To capture a cardinality error, we have defined the class

Cardinality_Error which holds all the feature cardinalities (members of FCardinality) that

contain such an error.

Next we define the rules that capture these errors in the FAM Ontology.

10.2.2.1 FAM Ontology - Error Capturing Rules

To detect Feature Assembly modelling errors, we have defined a set of SWRL rules.

Furthermore, the defined SWRL rules also isolate the errors in the FAM Ontology by defining

them as members of the appropriate Error class. We will explain below the different rules

used.

 Rules to Capture Cyclic Dependencies

A cycle occurs when a feature dependency holds between Feature A and Feature B, and

the same dependency holds between Feature B and Feature A. The following rule captures

a cyclic use of the uses feature dependency. Note that the uses dependencies is transitive

and therefore the cycle is not necessary a straightforward cycle but may be the result of a

chain of feature dependencies (which was probably unforeseen at modelling time).

uses(?x,?y) ˄ uses (?x,?y) → cyclic (?x,?y) …(1)

Listing 10.10: Rule to capture Inconsistency Error due to cyclic uses dependency

 Rules to Capture Inconsistent Dependencies

An Inconsistency error is due to the use of two mutually exclusive dependencies. Usually,

this error does not result from a direct specification of these mutually exclusive properties,

but is a result of evaluating the existing feature dependencies and inferring new knowledge

Chapter 10: Feature Assembly Knowledge Management Framework

173

based on their specifications. Rules (2) to (3) shown in listing 10.11, capture these type of

errors, as already mentioned mutually exclusive feature dependencies are: (requires,

excludes), and, (uses, excludes).

requires(?x,?y) ˄ excludes(?x,?y) → inconsistent (?x,?y) …(2)

uses(?x,?y) ˄ excludes(?x,?y) → inconsistent (?x,?y) …(3)

Listing 10.11: Rules to capture Inconsistency Errors cue to conflicting dependencies

 Rules to Capture Redundant Dependencies

Redundancies may intentionally be part of the model or they may be an indication of badly

defined feature dependencies. For example, uses and requires dependencies should not be

used in combination, a feature may either use or require another feature but not both.

Neglecting such cases may lead to implicit cycles in the defined Feature Assembly

models. Furthermore, because some dependencies are defined as transitive, the reasoner

will infer new feature dependencies based on this transitivity (i.e. it will compute the

whole transitivity chain of the defined dependency). Rule 4 shown in listing 10.12,

captures this redundancy between the (uses, requires) dependencies.

uses(?x,?y) ˄ requires(?x,?y) → redundant(?x,?y) …(4)

Listing 10.12: Rules to Capture Redundancy Errors Due to Redundant Dependencies

 Rules to Capture Cardinality Errors

Cardinality errors are due to human mistakes, i.e. by defining a maximum cardinality

lower than the minimum. To capture such errors we use the SWRL built in

swrlb:greaterThan to compare the maximum and minimum cardinalities (rule (5) shown

in listing 10.13).

 max(?x,?y) ˄ min(?x,?z) ˄ swrlb:greaterThan(?z, ?y) → Cardinality_Error(?x) …(5)

Listing 10.13: Rules to Capture Cardinality Errors

Note that, the Perspective that the feature belongs to has no effect on the rules that

identify feature-modelling errors. This is because the FAM Ontology glues the different

perspectives based on common features (i.e. same features). Therefore, the above-defined

rules are also applicable for features belonging to different perspectives.

10.2.2.2 FAM Ontology - Error Debugging

A merit of using the Protégé ontology editor is its capabilities to show the axiom

entailments that lead to a certain inference, i.e. for each inference made by the reasoner an

“Explain Inference” button exists, when pressed it provides the set of axioms that lead to the

inference made. This is particularly important in the FAM Ontology in order to understand why

certain premises were made by the reasoner when inferring knowledge. We also use this

functionality to identify the axioms in the ontology (and therefore the model assumptions) that

lead to errors. This is essential to support modeller in correcting errors. It is not sufficient to

Chapter 10: Feature Assembly Knowledge Management Framework

174

report that errors are detected, we should also help the modellers as much as possible in

correcting the errors and this implies that we should be able to show him the sources of the

errors. We call this process the error-debugging process. To show how error-debugging works,

we have added some incorrect feature dependencies to the QPL case given in chapter 8.

For example, to demonstrate inconsistency errors we added the following feature

dependency to the already existing dependencies, Simple OM requires Reports. Figure 10.5

shows the entailed class assertions inferred by the reasoner. The entailment shows that excludes

is a symmetric property, requires is a transitive property. It also states the rule:

excludes(?x,?y) ˄ requires(?x,?y) → inconsistent (?x,?y) on which the inferred

information was based, and a list of the axioms that the rule(s) was evaluated against, in this

case this list is:

Multi_User excludes Simple_OM (1)

Reports requires Multi_User (2)

Simple_OM requires Reports (3)

Evaluating axioms (2) and (3) yields the inferred axiom: Simple_OM Requires

Multi_User, this evaluated together with axiom (1), and the given SWRL rule results in the

inferred axiom: inconsistent (Multi_User, Simple_OM). Given that the inconsistent

object property has a domain Inconsistency, then the reasoner assigns the individuals

Multi_User and Simple_OM , as members of the Inconsistency class.

To demonstrate cardinality errors we added a wrong cardinality to the already existing

feature Publish_Cardinality, which identifies the cardinality of the Publish feature. We set a

Maximum cardinality of 1 and a minimum of 3. Figure 10.6 shows the explanation for the

reasoner inference which associated the Publish_Cardinality feature to the class

Cardinality_Error.

Chapter 10: Feature Assembly Knowledge Management Framework

175

Figure 10.5: Explanation For an Inconsistency Detected by The Reasoner – Using Protégé

Figure 10.6: Explanation for a Cardinality Error- Using Protégé

It must be noted that the explanation for the reason of the error provided by protégé (as

shown in figures 10.5 and 10.6) may not be very intuitive for modellers. This is due to the fact

Chapter 10: Feature Assembly Knowledge Management Framework

176

that it was developed for debugging ontologies rather than debugging feature models.

Therefore, it displays the raw axioms of the ontology that cause the inconsistency. In order to

be usable for non-ontology specialists, an additional layer should be provided that translates the

raw information provided into more meaningful FAM terminology. Nevertheless, it is a first

and important step towards the facility to effectively debug errors in Feature Assembly models.

10.2.3 Populating the FAM Ontology with Individuals

As already mentioned, the FAM Ontology
60

 acts as a meta-model to represent Feature

Assembly models. The FAM Ontology benefits from the expressivity of OWL and the

reasoning power of current OWL DL reasoners in order to infer hidden and implicit knowledge

about the Feature Assembly models. This is helpful in detecting implicit or unintended

modelling errors as shown in the previous section. The TBox of the FAM Ontology holds the

actual representation of the specific Feature Assembly model(s). The ABox acts as the meta-

model. As already mentioned, once the FAM Ontology is populated with individuals, it actually

becomes a knowledge base containing knowledge on the Features Assembly models (please

refer to figure 10.1)

 In this section, we

illustrate how the FAM

Ontology can be populated. For

this we use an excerpt
61

 (shown

in figure 10.7) of the QPL case

presented in chapter 8. We show

the axioms that define the

different individuals (i.e. feature

assembly model instances) by

means of the OWL functional

syntax (this is done visually

with an ontology editor). First

we define the

Quiz_PL_System_Perspective

System perspective for the QPL,

this is an instance of (i.e. class

assertion) the System class (a

subclass of the Perspective class):

Declaration(NamedIndividual(:Quiz_PL_System_Perspective))

ClassAssertion(:System :Quiz_PL_System_Perspective)

Next, we define the concrete feature QuizPL concrete feature, and assign it to the

Quiz_PL_System_Perspective via the belongs_To object property:

Declaration(NamedIndividual(:QuizPL))

60

 The FAM Ontology can be downloaded from: http://wise.vub.ac.be/feature_assembly/FAM/FAM.owl

61

 The complete QPL representation using FAM can be found at:

http://wise.vub.ac.be/feature_assembly/FAM/FAM_QPL.owl

Figure 10.7: An Excerpt of the QPL System Perspective

http://wise.vub.ac.be/feature_assembly/FAM/FAM.owl
http://wise.vub.ac.be/feature_assembly/FAM/FAM_QPL.owl

Chapter 10: Feature Assembly Knowledge Management Framework

177

ClassAssertion(FAM:Concrete_Feature :QuizPL)

ObjectPropertyAssertion(:Belongs_to :QuizPL :Quiz_PL_System_Perspective)

Similarly, we also define the abstract features: License, and Question Types, which

belong to the Quiz_PL_System_Perspective. Furthermore, the Reports feature is the same

feature as the Quiz Reporting feature in the functional perspective

(Quiz_PL_Functional_Perspective). This is shown by the axioms below:

 License:

Declaration(NamedIndividual(:License))

ClassAssertion(FAM:Abstract_Feature :License)

ObjectPropertyAssertion(:Belongs_to :License :Quiz_PL_System_Perspective)

 Question Types:

Declaration(NamedIndividual(:Question_Types))

ClassAssertion(:Abstract_Feature :Question_Types)

Similarly, we also define the concrete feature Quiz_Question_Generator that belongs

to the Quiz_PL_System_Perspective:

ClassAssertion(:Concrete_Feature :Quiz_Question_Generator)

Declaration(NamedIndividual(:Quiz_Question_Generator))

ObjectPropertyAssertion(:Belongs_to :Quiz_Question_Generator

:Quiz_PL_System_Perspective)

Next, we define the feature relations for each defined feature. Starting with QuizPL, it

is mandatory composed of Licence, Question_Types, and Quiz_Question_Generator. This is

defined via the object property Mandatory_Composition. It is also optionally composed of

Reports; this is defined via the object property Optional_Composition, as shown by the

following set of axioms:

ObjectPropertyAssertion(:Mandatory_Composition :QuizPL :Quiz_Question_Generator)

ObjectPropertyAssertion(:Mandatory_Composition :QuizPL :Question_Types)

ObjectPropertyAssertion(:Mandatory_Composition :QuizPL :License)

 The next set of axioms define the options of the License feature, it also associates the

feature with its corresponding cardinality, named License_Cardinality, a maximum and

minimum cardinality is specified:

ClassAssertion(:Concrete_Feature :Multi_User)

ObjectPropertyAssertion(:Belongs_to :Multi_User :Quiz_PL_System_Perspective)

ClassAssertion(:Concrete_Feature :Single_User)

ObjectPropertyAssertion(:Belongs_to :Single_User :Quiz_PL_System_Perspective)

ObjectPropertyAssertion(:has_Option :License :Multi_User)

ObjectPropertyAssertion(:has_Option :License :Single_User)

ObjectPropertyAssertion(:has_Cardinality :License :License_Cardinality)

Chapter 10: Feature Assembly Knowledge Management Framework

178

ClassAssertion(:FCardinality :License_Cardinality)

DataPropertyAssertion(:Max :License_Cardinality "1"^^xsd:string)

DataPropertyAssertion(:Min :License_Cardinality "1"^^xsd:string)

The next set of axioms defines the different types of questions supported for the

Question_Types abstract feature. It is also associated with a cardinality individual named

License_Cardinality, a maximum and minimum cardinality is specified:

ClassAssertion(:Concrete_Feature :Matching)

ObjectPropertyAssertion(:Belongs_to :Matching :Quiz_PL_System_Perspective)

ClassAssertion(:Concrete_Feature :True_False)

ObjectPropertyAssertion(:Belongs_to :True_False :Quiz_PL_System_Perspective)

ClassAssertion(:FCardinality :Question_Cardinality)

DataPropertyAssertion(:Max :Question_Cardinality "any"^^xsd:string)

DataPropertyAssertion(:Min :Question_Cardinality "1"^^xsd:int)

 The next set of axioms defines the composition of the Quiz_Question_Generator

concrete feature. It has an optional composition of the concrete feature Randomize, this is

defined by the following set of axioms:

ClassAssertion(owl:Thing :Randomize)

ObjectPropertyAssertion(:Belongs_to :Randomize:Quiz_PL_System_Perspective)

ObjectPropertyAssertion(:Optional_Composition :Quiz_Question_Generator

:Randomize)

The next set of axioms defines the excludes dependency between the Matching feature

and the Single User feature. The defined feature dependency is enriched with the use of the

Dependency_Description annotation to document the rationale of the dependency. The

Dependency_Owner annotation documents the stakeholder that defined the dependency.

ObjectPropertyAssertion(Annotation(:Dependency_Reason “A soft dependency based on

that Single user license is a free product with limited capabilities.

Sophisticated question types such as matching are not part of this free version.”)

Annotation(:Dependency_Owner :Lamia) :excludes :Matching :Single_User)

 As can be seen from the above example, representing a Feature Assembly model

using the FAM Ontology is a straightforward process. Moreover, ontology editors simplify the

above-mentioned process as they allow doing this process visually. For example, figure 10.8

shows defining this feature dependency and adding the Dependency_Reason and the

Dependency_Owner annotations to the dependency assertion in Protégé.

Chapter 10: Feature Assembly Knowledge Management Framework

179

Figure 10.8: Example using of Dependency_Reason and the Dependency_Owner annotations in Protégé.

10.3 FAM Knowledge Manipulation

As already mentioned, the FAM Ontology is a machine processable knowledge model

that defines the formal semantics for the Feature Assembly Modelling Language. Furthermore,

with the help of DL reasoners new information can be inferred from the ontology and based on

this some modelling errors can be automatically detected. Once populated with instances it

becomes a single point of access for managing and manipulating the stored Feature Assembly

models. As already mentioned, one of the merits of using the FAM Ontology is that it

integrates feature assembly models created in different perspectives based on their intra-

perspective dependencies. In general, two different approaches are used for finding information

in large repositories: browsing and querying. We show below how each approach can be

applied for the FAM Ontology based on general-purpose ontology tools. However, we also

show how the two approaches can be combined in one FAM dedicated tool.

10.3.1 FAM Ontology Browsing

Browsing is used when somebody is looking for information but doesn’t know exactly

how to find it or whether it is available at all. In the case of FAM for example, developers may

be looking for reusable features without knowing exactly which features they are looking for,

or sales persons that need to know whether a certain feature exits for a certain system without

exactly knowing the name of the feature. For this purpose, a general-purpose ontology browser

could be used to allow navigating through the FAM Ontology. We illustrate this by using the

jOWLBrowser (shown in figure 10.9). The ontology browser displays the ontology contents by

means of classes, properties and individuals, which corresponds to FAM concepts, FAM

Chapter 10: Feature Assembly Knowledge Management Framework

180

relations and FAM instances respectively. Additionally, the jOWLBrowser also allows for free-

form search. A reasoner should be applied to the ontology (e.g., via Protégé) before actually

browsing it in order to have inferred knowledge as part of the browsed ontology.

For example, figure 10.9 shows an example where a FAM ontology is explored for

concrete features, and the details of the Functional Quiz PL concrete feature (which belongs to

the Functional perspective) is requested. Using this browser users can search for features that

satisfy a certain condition, for example, features that are variation points, features that are

concrete; or features that have a specific property which can be for example belonging to a

certain perspective, a feature to feature constraint (i.e. one of the feature dependencies

excludes, includes, ..). Similarly, users can browse perspectives and limit their browsing to

specific parts of the knowledge, for example perspectives that have a certain stakeholder, or a

certain keywords and so on.

Figure 10.9: Browsing the FAM Ontology for QPL using the jOWLBrowser – Showing Details for Functional Quiz

PL Concrete Feature which Belongs to the Functional Perspective

10.3.2 FAM Ontology Querying

There are many scenarios where the users know what they are looking for. For example

some users may want to search for all features that satisfy certain criteria. For example, for

searching to find specific features, many criteria can be combined such as: the perspective,

Chapter 10: Feature Assembly Knowledge Management Framework

181

involved stakeholders, and feature dependencies. The need for FAM Ontology querying stems

from these needs. Querying for information allows users to find exactly what they are looking

for, provided that they can formulate a search criterion. Users will use queries to find certain

characteristics of the represented models in order to gain better insight or to solve existing

problems (e.g., inconsistency or redundancy).

To illustrate querying for information in the FAM Ontology, the SPARQL query

language was used. The SPARQL queries are executed against the populated FAM Ontology

and returns a list of instance tuples that satisfy the query. Using the OWL2Query plugin in

protégé, a SPARQL query can be constructed either visually or using SPARQL query language.

In this section, we give some query examples to show some possible patterns of finding

information in the FAM models using the FAM Ontology.

 The users may be interested to know which features exclude each other. This can be

answered by querying all the features that act either as source or as destination of an excludes

property. To answer this quest, the following query can be used:

SELECT ?Destination_Feature ?Source_Feature WHERE { ?Source_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#excludes

> ?Destination_Feature . }

Figure 10.10: Querying for Features with an Exclude Dependency Using the OWL2Query Plugin in Protégé

Figure 10.10 shows the results of this query, and its visual representation using the

OWL2Query Protégé query plugin.

We can further refine the above-mentioned query by asking for features that also

belong to the system perspective:

Chapter 10: Feature Assembly Knowledge Management Framework

182

SELECT ?Destination_Feature ?Source_Feature

WHERE{?Source_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#excludes

> ?Destination_Feature . ?Destination_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#Belongs_

to>

http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#Quiz_PL_F

unctional_Perspective }

Additionally, more sophisticated queries can be created to ask for optional information

within the triple patterns linking the data. For example, we may need to ask for the stakeholders

involved with features that have an excludes dependency. At the same time, we do not want to

miss the features which do not have a stakeholder assigned (via the has_Stakholder object

property). To solve this, we define these parts of the query as optional (using the OPTIONAL

SPARQL keyword) as shown below:

SELECT ?Destination_Feature ?dst_stakeholder ?Source_Feature ?src_stakeholder

WHERE {

?Source_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#excludes

> ?Destination_Feature . ?Destination_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#Belongs_

to>

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#Quiz_PL_

Functional_Perspective> OPTIONAL { ?Source_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#has_Stak

eholder> ?src_stakeholder} OPTIONAL { ?Destination_Feature

<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#has_Stak

eholder> ?dst_stakeholder }

}

Using the above-mentioned patterns, many different queries can be formulated to ask

for different information concerning the software system modelled by the Feature Assembly

Modelling language and represented by the FAM Ontology. Because it is difficult for users

with no experience of SPARQL to formulate these queries, these queries can also be formulated

using interactive search forms. This is described in the next section.

10.3.3 Dedicated Ontology Browsing and Querying

General-purpose ontology browsers have no awareness of the meta-model behind the

information represented by the ontology. The ontology concepts or meta-model (i.e. classes,

properties and instances) is what is actually being presented. In the case of Feature Assembly

models it would be more useful if the information could be browsed in terms of features and

perspectives rather than in terms of classes and properties. For this purpose we have

implemented
62

 a dedicated ontology browser to allow users to visually and interactively

62

 Credit for the implementation of the FAM Ontology browser and visualizer goes to our Bachelor

student Jasper Tack. A running version of this implementation can be found at:

Chapter 10: Feature Assembly Knowledge Management Framework

183

navigate through the ontology and find information. The Feature Assembly Ontology browser

visualizes the represented information in terms of Feature Assembly models using the notations

of the FAM language (see section 6.5 for the notations). Furthermore, for the sake of scalability

the users navigate through the existing Feature Assembly models by clicking on the features of

their interest to allow them to expand. This expansion on demand property of the visualization

allows keeping the point of interest focused in large models (this was a recommendation

distilled from our early prototype, see chapter 11 for more details) as opposed to expanding all

the nodes at once up to a certain level.

Figure 10.11 shows the system perspective for the QPL where the Reports feature has

been expanded. It is also possible to visualize the Feature Assembly models of more than one

perspective by selecting the perspectives to visualize from the Perspectives tab as shown in

figure 10.12. In this case the visualization allows to view the features common to more than

one perspective (e.g. Reports in figure 10.12). Furthermore, the feature dependencies among

the visualized features are also shown, therefore allowing to understand how the features of the

different perspectives are linked to each other.

Figure 10.11: The FAM Ontology browser visualizing the QPL

http://wise.vub.ac.be:8080/FAM_FeaturePool/FPvisualizer.html. Note that in this version a larger set of

dependencies are support than we currently do.

Chapter 10: Feature Assembly Knowledge Management Framework

184

Figure 10.12: The Perspectives Tab allows visualizing the Feature Assembly models of more than one perspective at

the same time.

The Options tab allows users to select the feature relations and feature dependencies that should

be shown in the visualization, as shown in figure 10.13.

Figure 10.13: The Options Tab allows visualizing the Feature Assembly models selecting which feature relations and

feature dependencies to view

For example, users may be interested in only viewing features with a composition

relation, in this case only part of the graph that represent composition links (both mandatory

Chapter 10: Feature Assembly Knowledge Management Framework

185

composition and optional composition) will be displayed. Likewise, users may wish to focus

only on core features common to all products, in this case only features with mandatory

composition relations could be displayed; or combine between viewing certain feature

dependencies and certain relations. This allows users to concentrate only on the selected set of

feature relations and features dependencies abstracting from all the details of the complete

model. The Details tab displays the detailed information of the selected feature.

Additionally, the FAM Ontology browser allows users to search the ontology for

features using certain criteria. The input of these criteria is enabled via a search form. Users can

search for features containing some text, belonging to a certain perspective, owned by a

specific stakeholder or used by specific stakeholders. Users can also search by the type of

feature (e.g. abstract, concrete, or option), the type of relations and dependencies the feature has

(e.g. optional, mandatory,… or excludes, requires, …) or the specific keywords associated with

the feature. Any combination of the above criteria is possible. The search query is internally

translated into a SPARQL query to derive the result from the FAM Ontology. The resulting

features are associated with a Details button and a Display button as shown in figure 10.14.

Figure 10.14 shows the search result of searching for a feature that has “Quiz” as part of its

name, and is an abstract feature.

Figure 10.14: The FAM Ontology browser’s Search facility.

 The Display button displays the visualization of the Feature Assembly model to which

the resulting feature belongs, the resulting feature is indicated by highlighting it (here with

yellow colour) as shown in figure 10.15 for the Quiz_Layout; the details of the feature are also

displayed in a pop up window. This facility allows users to search for features specifying

certain criteria and then navigating the models starting from these features.

Chapter 10: Feature Assembly Knowledge Management Framework

186

Figure 10.15: The FAM Ontology browser’s Display facility.

These examples illustrate that the FAM Ontology browser allows users to interact with

the information contained in the FAM Ontology without the need for ontological knowledge

(and OWL knowledge); only the understanding of Feature Assembly notations is required. Also

form-based search is simpler to use than writing full-fledged SPARQL queries. This shields

users from the ontology behind the scene while gaining the benefits of using an ontology.

10.4 The Feature Pool Ontology Representation

As already stated in chapter 9, the Feature Pool is a repository of features with only the

information essential for feature reuse. Revisiting the structure of the Feature Pool shown in

figure 10.16, on the level of the ontology concepts (i.e. TBox) the FP Ontology shares the same

concept structure as the FAM Ontology. Therefore, concepts related to capturing errors (i.e.

Error class) and associated error detection SWRL rules are not part of the Feature Pool

ontology. Thanks to the modular representation of the FAM ontology the Feature Pool

Ontology could be easily extracted from the FAM ontology. Note that ontology reuse by

ontology module extraction is a well-known technique in the ontology engineering domain for

reusing existing ontologies to create new ones [Rector et al., 2005] [Doran et al., 2007].

Furthermore, on the instance level (i.e. ABox), one can consider the Feature Pool as a subset of

the FAM Ontology, containing only the feature information that needs to be stored for enabling

reuse (please refer to section 9.3.1 for an example) .

The concepts that were extracted from the FAM Ontology include: Feature,

Perspective, Stakeholder, and Variability. In addition to extracting these classes, the

object properties that associate them were also extracted. The following properties were

extracted: Belongs_to, Composition, FTFC, Has_Option, Option_Of, Used_in,

has_Owner, and has_Stakeholder.

Chapter 10: Feature Assembly Knowledge Management Framework

187

Figure 10.16: Feature Pool meta-model

Additionally, some new concepts (both classes and properties) needed to be introduced

to the Feature Pool Ontology (FP Ontology
63

). The FP Ontology contains two new classes

Product_Line and Keywords. The Product Line class refers to the product (lines) in which the

features appear. This link is maintained via the perspective to which the feature belongs. The

object property has_Perspective represents this link. It has domain Product_Line and range

Perspective. Keywords are associated to features via the has_Keyword object property, which

has domain Feature and range Keyword.

Figure 10.17 shows the FP Ontology in Protégé, showing the class hierarchy of the

Feature Pool. Figure 10.17 also shows the usage of the Product Line class, in this case there

are two product lines defined in the feature pool (i.e. instances of the product line class)

Quiz_Product_Line and Exam_ Product_Line.

63

 The FP Ontology is given in appendix D, it can also be found at

http://wise.vub.ac.be/feature_assembly/FAM/FeaturePool.owl

Chapter 10: Feature Assembly Knowledge Management Framework

188

Furthermore, the fact that the FAM Ontology and the FP Ontology share the same

concepts (TBox) allows us to use the dedicated Feature Assembly Ontology browser to

navigate and search the contents of the Feature Pool.

10.5 Summary

In this chapter, we presented the Feature Assembly Knowledge Representation

Framework which answers our third research question RQ2. Knowledge concerning the

different features, their relations, and dependencies are represented by means of an ontology

called the Feature Assembly Model Ontology (FAM Ontology). The FAM ontology provides a

formal and machine processable representation of the Feature Assembly models introduced in

chapter 6. The FAM Ontology was implemented using OWL DL, a decidable subset of the

OWL ontology language. The FAM Ontology acts as a formal documentation store for

information contained in the graphical Feature Assembly models. The ontology also allows

using the power of DL for enforcing the feature assembly models formulation rules in order to

guarantee the well-form ness of the created feature assembly models. Furthermore, the FAM

Ontology defines a set of rules necessary to detect Feature Assembly modelling errors. We

have formulated a set of rules that allow detecting four types of modelling errors: cycles in

feature dependencies, inconsistencies between features dependencies, redundant feature

Figure 10.17: FP Ontology in Protégé, Showing Usage of the Product Line Class.

Chapter 10: Feature Assembly Knowledge Management Framework

189

dependencies, and cardinality errors. We have also shown by means of an example how the

FAM Ontology vocabulary can be used to represent individual Feature Assembly models.

We have also shown the power of such a representation for information retrieval. We

have demonstrated two types of information retrieval methods, browsing for information and

querying for information. We have shown by means of examples how complex queries can be

issued to reveal information contained in the Feature Assembly models. Furthermore, we have

shown how the technicalities of ontologies can be shield from the end-user by providing a

dedicated browsing and querying tool for Feature Assembly Models rather than using general-

purpose ontology tools.

Finally, we concluded the chapter by pointing out how the same knowledge

representation technique was applied for the Feature Pool. The Feature Pool is implemented via

the Feature Pool Ontology which is an OWL-DL representation of the structure of the Feature

Pool. Furthermore, the Feature Pool may be populated with instances to provide a store for the

feature information of more than one product line, thus allowing finding information for feature

reuse. Actually, the Feature Pool Ontology was extracted from the FAM Ontology. Therefore,

the Feature Pool can be browsed and searched using the Feature Assembly Ontology browser.

190

Chapter 11: Feature Assembly in Practice

191

Chapter 11

Feature Assembly in Practice

So far in the thesis, we have presented the Feature Assembly approach for modelling,

managing and reusing feature models. As already mentioned, the Feature Assembly approach

tries to address some of the limitations of existing feature modelling methods. Furthermore, it

allows for management of the knowledge of the feature models throughout the lifecycle of the

product. Additionally, the Feature Assembly Reuse Framework aims at reusing existing feature

specifications when modelling new systems or expanding current ones. In this chapter we

present an industrial
64

 experience of applying the Feature Assembly approach in an IT

company. The main purpose was to conduct an exploratory study to validate the approach in an

industrial setting.

11.1 Pilot Survey

Prior to applying our research in an industrial setting, we have surveyed the relevance

of the feature assembly approach among 16 companies. We briefly presented the Feature

Assembly approach by means of an elevator pitch during a gathering of software companies

interested in software variability. Following that, we also had an individual 5 to 10 minutes

discussion with interested representatives. The discussions targeted the way they handle

variability in their systems, how they explicitly model it (if any), how they manage the

information in their models, what type of information they need to know about their features,

and the importance of the concept of modelling with reuse for them. After the gathering (which

lasted about 2 hours), the participants were asked to fill in a questionnaire, which (among other

things) rated the approach based on its relevance for the company. A 5 point scale was used:

bad, weak, average, good, and excellent. Note that during this gathering also other variability

solutions were proposed. Out of the 16 companies three companies gave a rating of excellent,

eight gave a rating of good, one gave a rating of average and four companies did not fill the

questionnaire, leading to an overall rating of good. This shows that there is a good interest of

companies in the presented technique.

This indicates that companies developing multiple related software products or

products having different variants are faced with many challenges. The discussions also

revealed that there is a need in companies for support to manage the dependencies between

their different features, modules or components, not only during analysis and design time but

during the complete lifetime of the product. Most of the companies at the gathering were also

interested in maximizing their reuse possibilities. Efficient reuse of already existing assets is a

64

 The findings presented in this chapter are based on the author’s experience in the VariBru industrial

project, in which periodic meetings are held with companies to communicate the consortiums research to

industry.

192

major issue for them. We also note that these two issues are related, i.e. reuse is affected by the

feature dependencies and vice versa.

It is agreed upon both in academia and in industry, that analysis and design are often

underestimated when developing new products [Van Ommering and Bosch, 2002] [Codenie et

al., 2009]. The impact of good design is obvious, yet good practice remains a challenge.

Furthermore, it was found that in small and medium scale companies variability is not planned

beforehand but actually evolves with time due to the expansion of the software to serve more

customers or due to the need to customize some features to meet the different needs of different

customers. In these situations, a poor product design may create problematic situations as the

software becomes difficult to extend, becomes extremely complex and unstable, and most of

the company’s time is spent on bug fixing, maintenance and testing. Therefore for these

companies a (processable) knowledge model that allows to efficiently keep track of the

commonality and variability of features in their products looks promising. Furthermore, most of

these companies work in a specific business sector, i.e. a single domain but with varying

customer requirements. These companies can benefit the most from the reuse opportunities

offered by the Feature Assembly Reuse Framework.

In the rest of this chapter we present our experience on using Feature Assembly in an

industrial setting based on the work we did with a medium scale software company,

ANTIDOT, working in the domain of web-based IT solutions and services for corporations,

companies and associations.

11.2 ANTIDOT Experience Report

ANTIDOT was one of the companies that participated in the above-mentioned survey.

The company was facing the problem of “products expansion”, and could immediately see

some potential in the Feature Assembly Reuse Framework to help them keep track of all the

existing as well as new features in their products. Particularly they wanted to keep track of all

the different features they deliver to their customers in order to make the best benefit of reusing

their existing features. These features were in their code base; they adopted an opportunistic

reuse of features/code which made it difficult to keep track of the dependencies and existing

variances of a certain feature at some point in time. Additionally, it was important for them to

be able to analyse the different relations between the different features within their product, and

in particular the feature dependencies because these affect greatly how they can customize the

final product.

Furthermore, the company was reengineering their core product, a content management

system (CMS), which they customize for many customers. They realized that although they had

not planned variability beforehand, it found its way into their product over time. Moreover,

after over 10 years working in the domain they gained a lot of experience in that domain. Based

on this experience, they now could identify where to incorporate variability in their product, in

order to make it more configurable, therefore reducing the development time/cost and meet

their customer needs. Additionally, they wanted to investigate how variability modelling could

help them in explicitly planning and representing the variability in their CMS product.

Additionally, they were interested in the possibility of systematic reuse of the CMS features in

their other products. Variability and commonality of features of the CMS and their

dependencies was becoming a headache for them as the number of possible products grew due

to continuously adding new features or feature variants.

As researchers, our goal was to validate our research results in a real world situation;

therefore, we have formulated a set of questions that are oriented to measure the relevance of

our Feature Assembly approach for the company. These questions can be applied to companies

Chapter 11: Feature Assembly in Practice

193

that have some form of variability in their products, and which did not yet apply a feature

modelling technique.

Q1. Is the Feature Assembly modelling approach expressive
65

 enough to deal with their

variability modelling issues, i.e. does the company see added value in adopting this

variability modelling approach?

Q2. Does the company have a problem of concealed information (i.e. information hidden

in code, paper documents, or in the heads of the developers)? Does the Feature

Assembly Knowledge Management Framework help resolving this problem?

Q3. Can we promote reuse of features (specifications) early in the development cycle?

Does the company believe that this will make a difference for the development cost?

The study aimed at finding answers to these questions. Answering these questions

should help us gain better understanding of the approach’s feasibility as well as its limitations.

11.2.1 Method Adopted

In order to find answers to the questions formulated in the previous section, we were of

the option that it was better that members of Antidot did the actual modelling of their product

rather than us doing this. We had five meetings with two members of the company. In the first

two meetings we introduced the Feature Assembly Modelling approach, Feature Assembly

Reuse Framework (i.e. the concept of a Feature Pool for feature reuse) and the Feature

Assembly knowledge manipulation. As an example, we created some partial feature models for

one of their products. In the following three meetings we discussed the models they created for

their system. Additionally, we explicitly asked for comments on the modelling approach, the

Feature Assembly Knowledge Management prototype we created for testing the approach, and

the feasibility of the Feature Pool approach.

The two participating members of the company held the roles of CEO and also Senior

Project Manager, and senior developer (he also plays the role of the designer). The first two

meetings lasted for one hour each; the next three meetings lasted for two hours each. In the next

section we provide more details for the different aspects of the FAM approach that we

considered.

11.2.2 Feature Assembly Modelling Technique

As already mentioned, the first meeting was dedicated to introducing the concept of

variability modelling. The concept of “modelling variability” was also quite new for them,

although they realized variability in their products. We introduced the Feature Assembly

Modelling technique and the different modelling notations used. We also gave an example of

how the modelling approach can be used in practice. The presented modelling technique and

the examples we gave them were based on our publications [Abo Zaid et al., 2010, a] [Abo

Zaid et al., 2010, b] which contained an extensive set of feature dependencies, the original set

of feature dependencies were: incompatible, excludes, uses, requires, extends, includes, impacts

65

 According to [Wand and Weber, 1993], expressiveness means completeness and clarity. Completeness

means that a modelling language has all the constructs that allow modellers to represent the domain

information. Clarity means that the language is free from construct redundancy, overload and excess.

194

and same (we later reduced this set to the dependencies listed in section 6.5.3 based on the

findings of this study and different discussion with other researchers about their usefulness).

We were also interested in understanding their domain and how they keep track of

information in their current settings. They mentioned that they keep track of their modules and

their functionality by means of an excel file that lists their modules and their functionality (an

excerpt of this file is shown in figure 11.1).

We used this file as a starting point for our next meeting were we discussed the use of

the Feature Assembly modelling techniques to represent their CMS. We also made some

feature assembly models that represent parts of their product in order to initiate the discussion

and which they could use as starting point for further modelling.

Figure 11.1: Excerpt of the information in the Excel File containing the CMS specifications

During our meeting we used a pen-and-paper approach for creating the models (or

rather modifying the created models). With these example models, they quickly got engaged

into the modelling process, and started to make adjustments to the models we created. For us

this was very positive, as it showed that the modelling notation and semantics we used was

intuitive and easy to understand. Figure 11.2 shows an example of the annotations and

corrections they made. Furthermore, they quickly understood the concept of perspective as

illustrated by the fact that they remarked that some of the features we modelled in the System

perspective were actually belonging to the Task perspective.

Chapter 11: Feature Assembly in Practice

195

Figure 11.2: Excerpt of Comments on CMS’s First Models

Together, we identified the following potential perspectives: System perspective, Task

perspective and GUI perspective. Next we asked them to do the modelling
66

 of their system, in

order to investigate how easy/difficult the modelling process would be. In the following

meetings, we discussed their models, answered their modelling questions, and collected their

comments on the ease of use and intuition of the modelling approach. They reported that to

analyse and model one major module of the CMS, it took one person about two hours and a

half. This resulted in a model with 28 features and 21 connections between features (14 feature

relations and 7 feature dependencies). In total, three persons were involved in the modelling of

the CMS. An issue was the learning time for the notations used, although they appreciated the

similarity with the UML notations (as they are using UML for system modelling). We report

their remarks on their experience (after they had done their modelling homework):

R1. Some features needed many feature dependencies and this was cumbersome to specify.

R2. At first, the distinction between some feature dependencies was not always obvious and

this initiated a discussion with other members to decide which one to use (e.g., ‘uses’

versus ‘requires’)

R3. They were wondering at which level of detail they had to model.

R4. It was not clear how they could specify external features/components.

R5. Sometimes they found it difficult to decide which perspective to use for modelling

certain features.

R6. It was not clear if and how they could model “different versions of the same feature”.

66

 We provided a Visio stencil that contains the notations used in the Feature Assembly Modelling

Language.

196

Some of these remarks are due to the lack of experience with the Feature Assembly

modelling technique and the lack of good documentation for the method (e.g., an elaborated

user guide), such as remarks R2, R3, and R5. Also remark R5 was because they assumed that a

feature should only belong to one perspective, which is not the case, a feature may have

different faces, and therefore the same concept represented by the feature may belong to more

than one perspective; the same feature dependency should be used to explicitly mark features

defined in different perspectives that refer to the same feature. For them remark R1 triggered

some important modelling questions: “Is it required to model all dependencies?” and in general

“How can dependencies be minimized during design in order to eliminate the coupling between

the features as much as possible, because high coupling will reduce the reusability?”. It actually

turned out that the different features of their product were more coupled than they had

expected. Remark R4 and R6 revealed some shortcomings of the Feature Assembly modelling

approach, as the method currently doesn’t provide support for this. Remark R6 was actually

interesting because it lead us to point them to the extends feature dependency to relate a feature

to another version of it (which is superior to it). Currently, the Feature Assembly Modelling

technique treats all features (external and non-external) similarly. Also it does not support

“versioning” of features, in FAM different versions are different features. These issues should

be considered in future work.

We have also noticed that after the second modelling meeting, the team was already

comfortable using the modelling technique, capable of making decisions concerning the feature

types and their dependencies. They were also comfortable using the term “feature” to refer to

their system capabilities. We then asked them for the expressiveness and ease of use of the

modelling technique. Specifically we asked:

MQ1. Did the concepts allow you to explicitly model all the information you wanted

to express?

MQ2. Did you find the modelling concepts easy to understand?

MQ3. Did you experience some redundancy in the provided modelling concepts?

MQ4. Was it difficult to choose which modelling concept to use during the modelling

practice?

MQ5. Did you find the modelling notations used appropriate for expressing the

modelling concepts they represent?

MQ1 asks for the completeness of the modelling concepts provided, the team

confirmed that the concepts were adequate to represent the variability and commonality in their

CMS.

MQ2 checks for the ease of use and appropriateness of the presented modelling

concepts for modelling features and their variability and commonality. Both team members

confirmed the ease of use of the concepts to model features (abstract features and concrete

features) and their relations. Yet they had some doubts about the feature dependencies, it was

not always clear which dependency to use.

MQ3 checks for construct redundancy. The team confirmed that the features and

relations concepts were adequate to represent the variability and commonality, while they could

experience some redundancy between the feature dependencies (for example, incompatible and

excludes were similar for them).

Answering MQ4, they indicated that the difference between the concepts of features

and feature relations was obvious while again they had some problems with the feature

dependencies. They identified their potential usable set of feature dependencies as (requires,

Chapter 11: Feature Assembly in Practice

197

uses, excludes, extends and same); it was only this set that they used in their models. The

extends dependency they only found relevant to indicate two versions of a feature. We agreed

to substitute that with meta-data associated to the feature, therefore a definition date was added

as part of the feature meta-data.

Answering MQ5, the team confirmed that the modelling notations used were intuitive

and easy to understand; the similarity between UML notations and Feature assembly notations

to model feature relations was appreciated.

Furthermore, the experience has confirmed the following merits of adopting the

Feature Assembly modelling technique:

1. Feature Assembly let them reconsider their “features” in order to increase the

modularity of the software. Using the Feature Assembly Modelling technique,

dependencies between features became more visible and they could use this to improve

the design for achieving a lower degree of coupling between modules/components at

the code level.

2. Explicitly modelling variability and commonality triggered new potential variation

points. As a consequence, more variability could be planned in the next version of the

product.

3. Documenting and understanding the feature dependencies helps them in better defining

their test scenarios, as the feature dependencies are reflected as module dependencies in

the code.

4. Feature Assembly models help them better identifying the impact of changes in

features.

5. The system perspective provides a better view on the important features of their

product, providing a different level of abstraction and understanding of their system.

The team also reported that Feature Assembly Models helped them with understanding

and managing the evolving variability of their product over time. Moreover, the team already

uses UML models to model their system, but with Feature Assembly a different level of

abstraction and understanding of their system was achieved. Modularity of their features was

made more obvious and let them consider improving their design for achieving better

modularity.

11.2.3 Feature Assembly Knowledge Manipulation

In order to justify the usefulness of readily finding information offered by the Feature

Assembly Knowledge Management Framework proposed in this thesis, we asked the team to

test our Feature Assembly models knowledge manipulation prototype in order to analyse and

find information concerning the models they defined. We wanted to verify if there is a need for

using the reasoning and rule support provided by an ontology or is storing, retrieving and

visualizing the models enough. For this a first prototype
67

 was used. This prototype was not

67

 Credit for this implementation goes to Tom Puttemans who implemented the Feature Assembly

Explorer prototype, which provides an interactive visualization for the Feature Pool represented using the

Feature Assembly Modelling technique. For more information on this implementation, please refer to

[Puttemans, 2011]. A running version of this implementation can be found at:

http://wise.vub.ac.be:8080/FeaturePool/

198

based on an ontology (as described in chapter 10) but on a relational database
68

. However, the

database structure was a one to one mapping of the FAM ontology defined in chapter 10. The

prototype is web-based, visualizes feature assembly models to allow users to navigate visually

through the models in order to find information. Furthermore, the prototype allows users to

search (i.e. query) for information based on the feature names, feature description, feature type,

and perspective name. Additionally the features belonging to a specific perspective can be

listed. Figure 11.3 shows these different search possibilities. Forms were used, opposed to

letting users formulate their search queries because forms are easier to use. Also a tag cloud

was provided to enhance the searching via tags. The tag cloud clearly indicates the popularity

of the tags used to mark features.

Figure 11.3: Screenshot showing how Information can be found in Feature Assembly Models - Applied to the models

of Antidot.

Figure 11.4: Screenshot showing how Feature Assembly Models are visualized allowing users to interact with the

information contained in the models - Applied to the models of Antidot.

Figure 11.4 illustrates how users can visually interact with their Feature Assembly

models. As shown in figure 11.4, the level of details can be changed via controlling the depth

(of the decomposition showed). Furthermore, as different stakeholders are interested in

68

 At the time this study was conducted the FAM ontology and the Feature Assembly Ontology browser

were not yet implemented. Feedback from this study has helped us define the capabilities of the Feature

Assembly Ontology browser presented in section 10.3.3.

Chapter 11: Feature Assembly in Practice

199

different parts of the information, we allow users to select/deselect the type of information they

would like to view (in the legend at the left side).

The team of Antidot confirmed that providing a visual navigation mechanism for

inspecting the models was indeed useful. Furthermore, allowing users to visually interact with

the Feature Assembly models is useful when tracing a certain feature for its relations or

dependencies. In their case, they had some features that represented the backbone of their

system and which they found very useful to inspect using the prototype. This functionality is

particularly important when more than one person is involved in the modelling (in their case

three persons were involved). Also, they reported that being able to control the depth of display

for a model during visualization is indeed useful for providing different levels of detail,

although they preferred an expand-on-demand
69

 rather an expand-all scheme when navigating

through the feature assembly models. The team also recommended adding some important

meta-data to the information stored. For example, they recommended adding a description for

each perspective and a definition date for the features. A definition date could also help them

overcome the lack of versioning support for the features mentioned in the previous section (we

actually updated our prototype to include this and let them test it again).

11.2.4 The Feature Assembly Reuse Framework

As already mentioned the company was in the phase of reengineering their product.

Among the discussions we had was the discussion of the applicability of the Feature Assembly

Reuse Framework for reusing already specified features in the design of new products. Being a

small company their reuse schema was based on the reuse of components and code at an

implementation level. Reuse at a design level was not given too much attention yet. Introducing

them to the concept of “reuse at a design level” has actually led them to reconsider the

modularity of their features to enable more reuse opportunities. Furthermore, they agreed that

considering reuse at a design level is important to promote component reuse rather than code

reuse. Furthermore, two aspects were distinguished, “design for reuse” and “design with reuse”.

To promote “design for reuse” the following guidelines were identified:

1. Identify which features are candidate standalone (i.e. consolidated and independent)

features.

2. Analyse which of the feature dependencies are essential and should be enforced for

these features.

3. Improve the models such that the feature dependencies between standalone features are

minimized.

4. Use the meta-data to describe these features, in order to be able to easy retrieve them

later on, in particular by the use of tags. Restricting the tags to a specific set (e.g. using

a predefined set of keywords) was not recommended, but rather a growing pool of tags

was advised.

To promote “design with reuse” the following requirements were identified:

1. A good search mechanism is needed to identify already existing and reusable features.

2. The need to invest time in carefully modelling (existing) software features.

69

 This remark has lead us to define an expand on demand scheme for the feature models visualized in

our Feature Assembly Ontology browser

200

11.2.5 Discussion

We can conclude that the work done during this evaluation, as well as the discussions

held, confirmed the value of the presented approach; it also revealed interesting future work

(discussed in chapter 12).

The presented study clearly answered our research questions stated earlier, the

company clearly stated that they see added value in applying feature analysis and modelling to

their product(s). Furthermore, the time needed by Antidot to learn to use the Feature Assembly

Modelling technique was quite short. The company was also very positive on the ease of use

and intuition of the modelling concepts and notations. They reported no problems with the

understandability of the modelling concepts (except for some of the dependencies). They have

also evaluated the expressiveness of the presented Feature Assembly modelling technique

through explicitly answering some questions concerning the modelling concepts and the

notations used (MQ1-MQ5). This answers our first question (Q1), and also gave us some

insight on improving our technique (by reducing the number of feature dependencies).

Feature Assembly knowledge manipulation (which is part of the Feature Assembly

Knowledge Representation Framework) was also appreciated for providing an interactive

medium for finding information about features in the Feature Assembly Models. For this to

payoff, the company has to enforce a strict policy for adding meta information (e.g., feature

description, feature keywords, stakeholders involved, customers who have this feature, etc.)

and therefore making it available for later. From the discussions we had it was also clear that

not all stakeholders need the same detailed level of information. For example, developers are

interested in all levels of details for the modules they are responsible for, but for other modules

they are only interested in the feature dependencies. It was clear that even this small company

does have a need to unlock information implicitly available inside the company (Q2).

The presented study only provided a partial answer to our third research question

considering feature reuse (Q3). Feature Assembly modelling allows making more modular

designs. Furthermore, the Feature Assembly Framework helps efficiently retrieve features for

reuse. Therefore we may say that it increases the chances of successful reuse inside the

company, therefore increasing the chances of reducing development cost. However, actual

reuse can only be achieved while developing a new product. This has not been performed

during the study. Therefore, it was not possible to answer R3 with complete certainty.

11.3 Threats to Validity

As we only validated the approach with one company, it may be possible that

experiences in other companies could be different. However, the company was unknown to the

researchers before the study was started and the company also didn’t have any reason to favour

the approach or the researchers. Therefore, we can state that the results obtained are rather

objective.

The fact that the company is a small-scale company may have had an impact on the

results. As already mentioned, the company has not been using the concepts of variability

modelling before, neither the concept of “feature” to describe their product capabilities. This

may have affected the results in two different ways. First, introducing a new modelling

technique may have introduced some learning time (which was indeed the case). Secondly,

because Antidot has not used a variability modelling technique before they cannot compare the

ease of use and expressiveness of Features Assembly to other feature modelling techniques.

Chapter 11: Feature Assembly in Practice

201

The study was done in a rather informal way, i.e. using meetings and discussion. We

believe that this is justified for a first (pilot) validation study, as the major purpose was to

obtain as much spontaneous feedback as possible. In later case studies and experiments, a more

rigorous approach will be used.

11.4 Summary

In this chapter, we first presented our experience in presenting the Feature Assembly

approach to software companies. We also presented our experience in actually applying the

approach in a medium scale software company. This exercise was fruitful in many ways.

Firstly, it gave us some insight on how companies work and what their challenges are

concerning specifying and managing the continuous growth and variation of their products.

Secondly, it has clearly shown the importance of (the often underestimated) modelling of

software, in particular variability.

This case shows that modelling software using the Feature Assembly Modelling

technique improves the understanding of the features that compose the software and their

relations, and provides a detailed overview of their contribution to the variability of the

software. Additionally, it provides a good overview on the modularity of the software and the

degree of coupling (represented by the feature dependencies). Moreover, the principle of

perspectives for the separation of concerns has helped focussing on one specific point of view

at a time. In particular, the system perspective was considered important because it gives an

overview of the main software capabilities. This experiment also revealed the need for planning

reuse and improving reuse opportunities by considering reuse early in the design process.

Being able to interact with the information contained in the feature assembly models

was also a very important issue for the company. Models are important to gain a better

understanding of the software, but being able to retrieve information from these models at

different phases of the software is also important.

202

Chapter 12: Conclusions and Future Work

203

Chapter 12

Conclusions and Future Work

In this chapter we conclude the work presented in this thesis, we first start by

summarizing the work presented. Next we highlight the main contributions of the thesis. We

conclude with exploring possibilities for future work.

12.1 Summary

Introducing variability into software supports the development of many different but

related software products instead of just one. However, it also raises the complexity; therefore

introducing variability should be done carefully (i.e. modelled) in order to keep the complexity

of the variable software under control. In this thesis we have presented the Feature Assembly

approach for feature modelling and information management of software variability and

commonality. This thesis tackles the following research questions (see figure 12.1, please refer

to section 1.4 for more details).

RQ1: How can variability and commonality modelling in today’s large and

complex systems be supported by addressing current challenges and limitations?

RQ2: How can the knowledge in feature models and features be captured and

unlocked?

For answering the above mentioned research questions, we have adopted a design

science approach. The result being an approach that allows modelling software variability and

commonality, and that allows for efficiently representing this information and allowing users to

inspect and query the models. The solution we proposed, the Feature Assembly approach, is an

integrated approach providing solutions to all problems addressed. We now summarize the

steps taken in the research and the artefacts developed.

12.1.1 Steps in the Research and Artefacts developed:

In order to do achieve our solution, the Feature Assembly Approach, we first identified

the challenges in modelling software variability taking into account the currently available

modelling approaches seeking answers for the first parts of our first and second research

questions RQ1.1, RQ1.2 (see figure 12.1 for details). Our study has resulted in the

identification of a number of limitations (see figure 12.1) of current feature modelling

techniques: difficulties in identifying features and using the modelling technique in practice;

semantic ambiguity of the modelling concepts used which resulted in poor expressiveness of

the modelling notations; lack of scalability support and limited reuse opportunities of

Chapter 12: Conclusions and Future Work

204

previously modelled features. These limitations are shown in figure 12.1 indicating how they

relate to the research questions raised in this thesis.

Next, we have analysed these issues in order to identify a set of recommendations to

overcome them. This was the base of our Feature Assembly Approach. Furthermore, we

believe that the reusability supported by the variability offered by the concept of software

product line is quite limited, as it should be possible to reuse the same feature with different

variability specifications in different products. Furthermore, reuse should be supported at the

modelling level; therefore we also aimed supporting feature reuse among different product lines

(and products) at the level of the feature specification. In order to do so, there was a need to

separate the definition of a feature from how it contributes to the variability. Additionally, there

was a need to allow different participants involved in the software development process to

share and collaborate their knowledge. It is important that this knowledge is readily available

and that it supports the team’s need to understand and analyse the complexity and gain a better

understanding of existing variability opportunities. We defined the following requirements:

1. Support for a new feature modelling technique that satisfies the following requirements:

a. Provides abstraction mechanisms to deal with complex and large systems.

b. Provides a rigorous methodology for feature modelling.

c. Provides unambiguous modelling concepts with intuitive meaning. In particular,

separates the feature from how it contributes to variability; it must be possible to

reuse the same feature in different variability specifications.

2. Support efficient information processing and knowledge management of feature models;

the following requirements should be supported:

Figure 12.1: Overview of the work presented in this thesis in relation to our research questions.

Chapter 12: Conclusions and Future Work

205

a. Allow users to share information about feature models, and allow them to query for

information contained in feature models.

b. Make it possible to support different abstraction mechanisms when viewing

information about feature models.

The first step for defining the Feature Assembly approach was the development of the

Feature Assembly Modelling technique (FAM). FAM is a conceptual feature modelling

technique that aimed to overcome the limitations of mainstream feature modelling techniques

(identified by RQ1.1. and RQ1.2 as already mentioned). The main characteristics and the

relations to our research questions are as follows:

 It uses perspectives as abstraction mechanisms, allowing features to be defined

from different points of view, thus answering research question RQ1.3. A product

line consists of one or more perspectives (e.g. Graphical User Interface

Perspective, Functional Perspective, User Perspective). It is up to the modeller to

select or define perspectives suitable for his product (line). In addition, we have

provided guidelines to assist modellers during modelling, thus answering research

question RQ1.4. We have also predefined a set of possible perspectives; at the

same time this set is extensible and which perspectives are used is dependent on the

domain of the product line. The concept of “feature” differs according to the

perspective considered; therefore we have provided guidelines for defining features

in each perspective.

 The modelling language provided uses simple feature modelling primitives, and

take into account the need for models to be flexible enough to support evolution of

the created models and the need to support reuse, thus answering research question

RQ1.2 and contributing to the answer for research question RQ1.5.

We only consider two types of features: Feature and Abstract Feature. A Feature

represents a concrete logical or physical unit or characteristic of the system. An

Abstract Feature is a feature that is not concrete; rather it is a generalization of

more specific features (concrete or abstract ones). How the features are assembled

together to compose the system is specified via feature relations. We have defined

two types of feature relations: composition relation and

generalization/specification relation. The composition relation is used to express

the whole-part relation; i.e. a feature is composed of one or more fine-grained

features. The composition can be mandatory or optional. The

generalization/specification relation is used to represent is-a relations. In terms of

variability, an abstract feature represents a variation point. Its available option

features (i.e. specifications) represent variants. The number of option features

allowed to be selected for a certain product is expressed via a cardinality

constraint.

Furthermore, we define a set of feature dependencies that allow expressing

dependencies between features. We allow feature dependencies to be expressed

between features from a single perspective as well as between features from

different perspectives. Feature dependencies between features from different

perspectives glue the different perspectives together.

 Furthermore, we pointed out the need to link data variability with the variability of

the system features. Therefore, we introduced the Persistent perspective for

modelling data intensive variable applications. We showed how the variability in

the application features triggers variability in the underlying data model and how

this link can be maintained by using variability annotations in the data model.

Chapter 12: Conclusions and Future Work

206

We have demonstrated with an example how the Feature Assembly Modelling approach can be

used. We showed the modelling process for a family of applications to create web-based

interactive quizzes.

The next step for realizing Feature Assembly was proposing a concrete reuse

mechanism in order to answer our research question RQ1.5; therefore, we defined the Feature

Assembly Reuse Framework.

 The Feature Assembly Reuse Framework allows reusing features from a

repository, called the Feature Pool. The Feature Pool is populated with features

whenever the development for a new product takes place. Features are

incrementally added to the feature pool, letting it act as a central storage of

features. When a new product is required, the feature pool should be searched in

order to find existing features that (partially) match the needs of this new product.

In this way, allowing new products to be assembled from already existing features

in addition to newly introduced ones.

Our final step for realizing Feature Assembly was to answer our third research question

RQ2. We do so by providing a processable representation of the Feature Assembly models and

the Feature Pool in order to allow users to interact with and share the information they hold. In

order to do so, we adopted a knowledge-based approach and created the following artefacts:

 We created the Feature Assembly Model Ontology (FAM Ontology), which is a

processable ontological model to represent the Feature Assembly models. The

FAM Ontology acts as a formal documentation store for the information contained

in the Feature Assembly models and it allows users to easily retrieve this

information. We provided two approaches for interacting with the information,

namely browsing the information (via a general purpose ontology browser) and

querying the information (we showed examples using SPARQL). Additionally, we

showed that applying these two approaches via a dedicated Feature Assembly

ontology browser is both more intuitive and more user friendly. Furthermore, the

FAM Ontology also allows using the power of Description Logic for enforcing the

Feature Assembly models formulation rules. Furthermore, we have identified a set

of rules that allow the ontology to isolate the set of features that cause some

modelling errors: cycles in feature dependencies, inconsistencies between features

dependencies, redundant feature dependencies, and cardinality errors.

 We have also created the Feature Pool Ontology which is the processable

representation of the Feature Pool; the Feature Pool Ontology was actually

extracted from the FAM Ontology.

We have also validated the Feature Assembly approach with a company. We presented

our experience in actually applying the approach in a medium scale software company. This

experience was fruitful in many ways. For this particular case, it confirmed our hypothesis

about the importance of the variability modelling phase and the impact of a good design on

future expansion of the software, and for reusing parts of it in other applications. Furthermore,

it has also confirmed that even with small-scale software and a small team there is a need for

managing and interacting with the feature model information. This experience has also helped

us refine our approach and discover some limitations and interesting future work.

Chapter 12: Conclusions and Future Work

207

12.2 Contributions and Achievements

In this section, we summarize the major contribution and achievements of the work

presented in this thesis. The contributions of our proposed solution are based on addressing the

limitations and practical issues of current feature modelling techniques. While current research

is devoted to automatic validation of feature models, we believe that there is still a need for

improvement in the feature modelling technique. While doing so, we also proposed answers to

some of the unaddressed issues in current variability modelling practice. The addressed issues

stem from the need to manage and communicate the large amount of knowledge concerning the

software’s features, their commonality, and variability.

In the field of variability modelling, this thesis builds upon the analogy between

assembling “parts” in industry and assembling “features” in software. Earlier, a similar analogy

has been made between assembling “parts” in industry and assembling “code” (i.e.

components) in software, however our approach is different in the sense that we introduce the

assembling as early as possible, i.e. during design time. Furthermore, we argue that reuse is

more effective if planned at domain analysis time. This allows making a design with reuse in

mind and could significantly help in coming up with more modular (and therefore reusable)

system. In addition, this has allowed us to combine “design for reuse” with “design with

reuse”, which also reduce the design effort. To the best of our knowledge no work exists on

proposing reuse of features or partial feature model. We hope that the work presented in this

thesis sheds the light to the importance of supporting such reuse of features and partial feature

models. On the one hand it allows for reusing previous knowledge of the domain. On the other

hand, reuse at the domain analysis phase should strengthen the reuse opportunities at design

and architectural phases.

This thesis emphasises the importance of the conceptual modelling of software

variability and commonality information. In this thesis, we take the position “conceptual

models are created by humans for humans”, sending the message that good feature models are a

medium to convey knowledge on the variability, commonality, relations and dependencies of

software features. We believe that the quality of the feature models should not be biased by the

modeller engaging into the modelling process, rather the feature modelling language should be

rigorous enough to support the modeller create unambiguous feature models. In the meantime

the created models should be simple and intuitive enough for other stakeholders to understand.

Therefore, unlike FODA and subsequent feature modelling techniques, the feature assembly

modelling technique supports modellers in defining feature models that express complexity, are

scalable, and unambiguous. Taking into account that modelling is a process which involves

many stakeholders; this should also contribute to a more effective feature modelling process.

Unlike current feature modelling techniques, we do not limit the modelling to a top down

hierarchical modelling; rather we allow a combination of both top-down and bottom-up

modelling for the sake of ease of modelling. We also use the concept of SoC to handle

complexity and feature modelling of large systems through defining the concept of

“Perspectives”. We do not restrict the modeller to a specific set of perspectives unlike for

example FORM [Kang et al., 1998] which restricts the modeller to four categories for defining

the features of the system.

As a contribution to the field of software modelling in general, the work presented

contributes to satisfying the observed need of information sharing and the unlocking of

information contained in software models. Software models are often stored as diagrams

without proper means for querying them; they are often difficult to understand by non-technical

people; and they may become very large. To overcome this, we have provided an integrated

solution based on a processable information model. We show how this model can be used to

create a visual and interactive feature model browser that can improve the collaboration

Chapter 12: Conclusions and Future Work

208

between different stakeholders in analysing, adding and retrieving information. Although there

has been some works on visualizing feature models, interactive visualization and query support

was missing.

The concrete contributions of this thesis can be divided into contributions to the

modelling of software variability, and contributions to the information management of software

variability. In the domain of modelling software variability we have the following

contributions:

1. The Feature Assembly Modelling language, which provides only a few modelling

concepts but with clear meaning. The language allows modelling features, their

variability, their relations and their dependencies. This language overcomes the

problems found in current mainstream variability languages.

2. The introduction of the concept of “perspective” as an abstraction mechanism

during modelling for dealing with large (variable) software. Perspectives provide

separation of concerns and ease the modelling as trying to deal with all aspects of

software at the same moment is very difficult and will usually result in badly structured

and large models.

3. The separation of the feature from how it contributes to variability allows defining

feature assembly models that are easy to change and allows features to be reused in

other designs.

4. The Feature Assembly Reuse Framework, which promotes modelling for reuse and

modelling with reuse. This allows making reuse of previous feature models; features or

even partial feature models can be shared between applications belonging to the same

domain or to similar domains.

5. The Feature Pool concept, which enables reuse of features by storing and

documenting them.

In the domain of managing information about software variability we have the

following contributions:

1. An ontology-based mechanism for representing, and validating variability

information, this includes the definition of the FAM Ontology which enables storing

and interacting (i.e. searching and browsing) with Feature Assembly Models; using

SWRL rules to detect modelling errors that may occur in the Feature Assembly models.

2. The Feature Assembly Ontology Browser which is a dedicated browser that allows

visualizing, interacting with and searching information represented in Feature

Assembly models.

3. The Feature Pool Ontology, which enables storing of reusable features, as well as

searching for features or simply exploring the complete feature space.

12.3 Limitations

In this section, we discuss the boundaries and limitations of our work:

 No Support for N-ary Feature Dependencies

In this thesis we restrict ourselves to binary feature dependencies, as they are easier to

understand and define (by modellers) than n-ary dependencies (as already mentioned in

section 6.5.3). We had to decide whether the power of n-ary feature dependencies (which

Chapter 12: Conclusions and Future Work

209

will allow modellers to specify rather complex feature dependencies, as we proposed in

[Abo Zaid et al., 2010]) outweighed the added complexity they introduce (e.g., checking

their consistency). Furthermore, in most situations complex dependencies may be reduced

to a set of binary feature dependencies. As we have not faced a case in which a binary

dependency was not sufficient to model the required feature dependencies, we opt, for the

sake of the modeller, for the simplicity of the binary dependencies.

 Limitations in detecting Modelling Errors

We concentrated on syntactical and common semantic errors. Yet there is no guarantee that

we cover all possible inconsistencies and semantic errors that may occur. For example, the

modeller might over-constrain the model such that no valid configuration can be found.

Currently we do not check this, as it requires a constraint solver to validate that the model

has feasible solutions. Furthermore, it could also be the case that the modeller

over-constraints a certain feature such that it is no longer possible to select it in any valid

configuration (i.e. it becomes a dead feature), we currently do not detect this error.

12.4 Future Work

The Feature Assembly Approach opens the way to new interesting future work. Some

work concerns straightforward elaborations of the work presented or extensions to the current

approach; others are more challenging and will require more research investigation. We list

these different possibilities for future work:

 Version Control for the Feature Assembly Approach

Evaluating the Feature Assembly approach in an industrial setting has revealed the need for

adding some type of version control for features. This is extremely relevant when using the

Feature Pool, as overtime some features may need an update in their internal structure and

therefore multiple versions of the same feature may exist in the pool. Therefore, there is a

need to be able to track all different versions of a certain feature, in addition to which

version of the feature is used in an application. Also, some features may not be relevant

anymore in new products and therefore it should be possible to flag these features as

deprecated.

 Additional meta-data for Feature Assembly Models

We have identified a basic set of meta-data information that needs to be associated with a

certain feature. Yet more research is required in order to extend this set with additional

meta-data. Enriching the features (and therefore the Feature Pool) with meta-data

guarantees more efficient retrieval of information when searching for specific features. Part

of this metadata may also be company specific, for example if a company associates a

certain working scheme for their teams in order to facilitate the interoperability of

information inside the company.

 Linking features with code-artefacts

Additionally, it would be interesting to explicitly link Feature Assembly Models to code

artefacts. This will allow maintaining a link between the models and the corresponding

code. This allows tracing the impact of changes in the model (e.g., for maintenance or

evolution of the product) on the code. Also, this will allow realizing reusability at the

architecture level. One possibility for this link between the features and the code could be

via defining the appropriate meta-data associated to the feature that allows to indicate to

which code artefact(s) this feature corresponds to. A one-to-one mapping between features

Chapter 12: Conclusions and Future Work

210

and code artefacts may not always be feasible and rather difficult to realize due to the many

tangling concerns between parts of code, classes and components involved. Therefore,

there may be a need to investigate the use of configuration languages as a kind of middle

layer between the high-level feature models and the low-level implementation components.

Configuration languages can abstract over low-level code composition, therefore,

establishing a more feasible link between the code and the features. And therefore,

providing support for the extended hypothesis of Feature Assembly approach which could

be: “generating software by assembling features (from the Feature Pool) that make up a

product”.

 Enhanced reasoning on the FAM Ontology

One of the merits of using Semantic Web technology for representing the Feature

Assembly models and the information contained in the Feature Pool is the possibility to

semantically process this ontology for retrieving new interesting information. For example,

a “similar to” relation may be added for features that have the same set of feature

dependencies, or have a number of common tags. A “used together with” relation may be

defined to provide recommendations for reusing features when reusing a certain feature.

More research is required to identify this set of “semantic” relations that may be of

relevance for features/perspectives defined within the Feature Pool. The goal is to provide a

better understanding of the hidden relations between features defined in the feature pool,

and make the best use of these relations to improve reuse opportunities. Eventually they

may also serve as design guidelines, this needs more investigation.

 Improved Feature Pool Information Visualization

A prototype for visually browsing Feature Assembly models is the FAM Ontology browser

is presented in chapter 10, which is also suitable for browsing the Feature Pool. In addition

to the current features of the FAM Ontology browser, users should be able to visually build

queries that query the Feature Pool and visualize the query results. To deal with the large

size of the pool, multiple visualizations should be supported. Additionally, users should be

able to select from different abstraction levels, these abstraction levels could relate to their

roles for example. More research is required on the adequate visualization techniques to use

and the best user interactivity supported; some user validation is also required.

 Feature Assembly Modelling Tool Support

There is a need for a Feature Assembly Modelling tool that allows users to visually create

Feature Assembly models, which are then stored in the FAM Ontology. We believe that

from a usability point of view visually modelling and editing Feature Assembly models

would be more appealing to users than adding this information via an ontology editing tool

(e.g., Protégé as already indicated in chapter 10) or via a form-based method (as already

indicated in chapter 11). One way to do so is via a diagram editor generator that makes use

of meta-model-based language specifications. In that case, in order to create an editor for a

specific diagram language, the editor developer has to provide two specifications: First, the

abstract syntax of the diagram language in terms of its model, and secondly, the visual

appearance of the diagram components (please refer to chapter 6.5 for the FAM model

syntax and semantics).

Chapter 12: Conclusions and Future Work

211

The development of such a tool triggers some research questions related to the

usability of the tool. As the number of features may become very large, as well as the

number of relations between features, there is a need for good feature model management

and visualization. In order to deal with the large size of the models, several views and

abstraction levels should be possible. Furthermore, there is a need to select the best

methodology to visualize perspectives, and how intra-perspective feature relations can be

defined via the tool. Additionally a list of facilities to enhance the user experience with the

tools should be provided, such as allowing information search in the generated models (i.e.

graphs), allowing information projection, supporting feature comparison, etc. Therefore,

more research will be needed to select the most appropriated visual notations, interaction

techniques, supported abstraction mechanisms, etc. Additionally, usability experiments

should be performed.

Furthermore, there is a need for a Feature Assembler tool that facilitates the actual

assembly process of creating Feature Assembly models from already existing features in

the Feature Pool in addition to the newly defined features. For this purpose, an interface to

the Feature Pool should be defined to allow retrieving features from the Feature Pool and to

add newly defined features to the Feature Pool.

 Feature Assembly Configuration Tool Support

Throughout this thesis our main concern was the conceptual modelling of the

variable software. Nevertheless for a complete solution there is a need for allowing users to

view the set of feasible products that a certain feature model defines. As already mentioned

the Feature (Assembly) Models represent a Constraint Satisfaction Problem (CSP),

therefore it is possible to use off–the–shelf constraint satisfaction solvers to automatically

calculate the number of possible configurations, detect void features, and detect possible

conflicts; as explained by Benavides et al. [2005].

Therefore it would be interesting to add configuration support to the Feature

Assembly Modelling Tools. For example, by providing an option “Calculate Products”

which communicates with the constraint solver, sends to it the encoded Feature Assembly

model and retrieves back the set of feasible solutions (i.e. possible product configurations).

Another alternative would be to make this link via the FAM Ontology, through a tool that

encodes the information contained in the FAM Ontology to be read by the constraint

solver, sends it the encoded model and retrieves back the set of feasible solutions to show

to the user.

 More evaluation

Applying the Feature Assembly approach to more industrial cases will certainly help

improving the technique. It will also help understand which of the above-mentioned future

work will be most relevant for companies and should be given priorities One interesting

scenario to evaluate is the appropriateness of using the Feature Assembly approach for

companies moving from many customized products to one variable product. There is a

need to explore how the idea of the Feature Pool could help these companies in the

productization process
70

. For example, Feature Assembly Models could explicitly sketch

the variability among features of the resulted customized products. These models can then

be enriched with metadata to help the different involved stakeholders find the necessary

70

 Transforming from developing customer-specific software to product software is referred to as

Productization [Artex et al., 2010]

Chapter 12: Conclusions and Future Work

212

information. Additionally the feature pool would act as a store for the product portfolio of

the company.

Another interesting scenario is to use Moody’s Method Evaluation Model [2003] to

evaluate and compare the semantic quality
71

 and the perceived semantic quality
72

 of

feature models and feature assembly models. This should allow to compare the two

techniques based on both actual and perception-based properties for measuring the

efficiency and effectiveness of a modelling method. Based on this, a set of rigorously

defined empirical tests should be set up to provide proper evidence that the work proposed

is pragmatically an improvement over existing approaches as well as semantically (we

provided some theoretical evidence that the Feature Assembly modelling technique is

semantically an improvement over current feature modelling techniques in section 6.6).

71

 The semantic quality expresses the degree of correspondence between the information conveyed by a

model and the domain that is modelled [Poels et al., 2005].
72

 The perceived semantic quality measurs perceptions of semantic quality as precived by users [Poels et

al., 2005], i.e the correspondence between the user interpretation (what a user thinks a model depicts)

and the domain knowledge [Figl and Derntl, 2011].

List of References

213

List of References

(1983). Software Technology for Adaptable, Reliable Systems (STARS) program strategy, ACM SIGSOFT

Software Engineering Notes, Vol.8 issue.2 April, pp.56-108.

(1996). DOD Software Reuse Initiative, ftp://ftp.cs.kuleuven.ac.be/pub/Ada-

Belgium/ase/ase02_01/bookcase/se_sh/whyreuse/index.htm#xtocid222690 , last visit 11/7/2012

Aamodt, A. (1995). Knowledge Acquisition and Learning from Experience - The Role of Case-Specific Knowledge,

In Gheorge Tecuci and Yves Kodratoff (eds): Machine learning and knowledge acquisition; Integrated approaches,

(Chapter 8), Academic Press, 1995, pp. 197-245.

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2009). Applying Semantic Web Technology to Feature Modeling. In:

The 24th Annual ACM Symposium on Applied Computing, The Semantic Web and Applications (SWA) Track.

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2010 a). Feature Assembly: A New Feature Modeling Technique. In :

29th International Conference on Conceptual Modeling, Lecture Notes in Computer Science, Vol. 6412/2010, pp.

233-246

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2010 b). Feature Assembly Modelling: A New Technique for

Modelling Variable Software", 5th International Conference on Software and Data Technologies Proceedings,

Volume: 1, pp. pp: 29 - 35, Eds. José Cordeiro Maria Virvou Boris Shishkov, Publ. SciTePress, ISBN 978-989-

8425-22-5, Athens, Greece

Abo Zaid, L., De Troyer, O. (2011). Towards Modeling Data Variability in Software Product Lines, T. Halpin et al.

(Eds.): BPMDS 2011 and EMMSAD 2011, LNBIP 81, pp. 453--467. Springer, Heidelberg (2011)

Abo Zaid, L., Kleinermann, F., De Troyer, O. (2011). Feature Assembly Framework: towards scalable and reusable

feature models, In Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems

(VaMoS '11). ACM, New York, NY, USA, pp. 1-9

Abo Zaid, L., De Troyer, O (2012). Modelling and managing variability with feature assembly: an experience report.

In Proceedings of the Second Edition of the International Workshop on Experiences and Empirical Studies in

Software Modelling (EESSMod '12). ACM, New York, NY, USA, DOI=10.1145/2424563.2424575

Acher, M., Collet, P., Lahire, P., France, R. (2009). Composing Feature Models. In: Proceedings of 2nd International

Conference on Software Language Engineering (SLE'09)

Acher, M., Collet, Ph., Lahire, Ph., France, R. B. (2012). Separation of concerns in feature modeling: support and

applications. In Proceedings of the 11th annual international conference on Aspect-oriented Software Development

(AOSD '12). ACM, New York, NY, USA, pp.1-12. DOI=10.1145/2162049.2162051

Ajila, S. A., and. Kaba, A.B. (2008). Evolution support mechanisms for software product line process. J. Syst. Softw.

81, 10 (October 2008), 1784-1801. DOI=10.1016/j.jss.2007.12.797

Alavi, M. and Leidner, D. E. (2001). Knowledge Management and Knowledge Management Systems: Conceptual

Foundations and Research issues. MIS Quarterly, Vol. 25, No. 1, pp. 107-136.

Alexander, I. F. , Maiden, N. (2004) . Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle.

Wiley.

Allemang, D, Hendler, J. A. (2008) Semantic web for the working ontologist - modeling in RDF, RDFS and OWL.

Elsevier 2008: I-XVII, 1-330

List of References

214

Anderson, J.R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51 (4), 355-365.

Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J-C., Rummler, A., Sousa, A. (2010). A model-driven

traceability framework for software product lines. Softw. Syst. Model. 9, 4 (September 2010), 427-451.

DOI=10.1007/s10270-009-0120-9

Artz, P., Van De Weerd, I., and Brinkkemper, S. (2010). Productization: The process of transforming from customer-

specific software development to product software development. In Proceedings of ICSOB 2010, pp. 90-102.

DOI=10.1.1.166.7

Asikainen, T. (2004). Modelling Methods for Managing Variability of Configurable Software Product Families.

Licentiate thesis. Helsinki University of Technology, Department of Computer Science and Engineering

Asikainen, T., Männistö, T., Soininen, T. (2006). A Unified Conceptual Foundation for Feature Modelling. In

Proceedings of the 10th International on Software Product Line Conference (SPLC '06). IEEE Computer Society,

Washington, DC, USA, pp.31-40.

Asikainen, T., Männistö, T., Soininen, T. (2007). Kumbang: A Domain Ontology for Modeling Variability in

Software Product Families. Advanced Engineering Informatics, 21(1), pp. 23-40

Aurum, A., Daneshgar, F., Ward, J. (2008). Investigating Knowledge Management practices in software

development organisations – An Australian experience. In: Information and Software Technology. Vol. 50, pp. 511-

533.

Atkinson, C., Bayer, J., Muthig, D. (2000). Component-based product line development: the KobrA approach.

In Proceedings of the first conference on Software product lines : experience and research directions: experience and

research directions, Patrick Donohoe (Ed.). Kluwer Academic Publishers, Norwell, MA, USA, pp. 289-309.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., Patel-Schneider, P. F. (2003). The Description Logic

Handbook: Theory, Implementation, and Applications Cambridge University Press

Babenko, L. P. (2003). Information Support of Reuse in UML-Based Software Engineering. Cybernetics and Sys.

Anal. 39, 1 (January 2003), pp.65-70. DOI=10.1023/A:1023821025887 http://dx.doi.org/10.1023/A:1023821025887

Bąk, K., Czarnecki, K.,.Wąsowski, A. (2010). Feature and meta-models in Clafer: mixed, specialized, and coupled.

In Proceedings of the Third international conference on Software language engineering (SLE'10), Brian Malloy,

Steffen Staab, and Mark Van Den Brand (Eds.). Springer-Verlag, Berlin, Heidelberg, pp.102-122.

Bartholdt, J., Oberhauser, R., Rytina, A. (2008). An Approach to Addressing Entity Model Variability within

Software Product Lines”, ICSEA 2008. pp. 465-471

Bartholdt, J., Oberhauser, R., Rytina, A. (2009). Addressing Data Model Variability and Data Integration within

Software Product Lines The International Journal On Advances in Software, vol. 2, no. 1, pp. 86-102, ISSN 1942-

2628.

Batini, C., Lenzerini, M., Navathe, S. B. (1986). A comparative analysis of methodologies for database schema

integration. ACM Comput. Surv. 18, 4 (December 1986), 323-364. DOI=10.1145/27633.27634

Batista, V.A., Peixoto, D. C. C., Pádua, W., Pádua, C. I. P. S, (2012). Using UML Stereotypes to Support the

Requirement Engineering: A Case Study. In Proceedings of the 12th international conference on Computational

Science and Its Applications - Volume Part IV (ICCSA'12), Beniamino Murgante, Osvaldo Gervasi, Sanjay Misra,

Nadia Nedjah, and Ana C. Rocha (Eds.), Vol. Part IV. Springer-Verlag, Berlin, Heidelberg, pp.51-66.

DOI=10.1007/978-3-642-31128-4_5

Batory, D. (2005). Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC

2005. LNCS, vol. 3714

Behjati, R., Yue, T., Briand, L. C. (2012). A Modeling Approach to Support the Similarity-Based Reuse of

Configuration Data. In Proceedings of the 15th international conference on Model Driven Engineering Languages

and Systems (MODELS'12), Robert B. France, Jürgen Kazmeier, Ruth Breu, and Colin Atkinson (Eds.). Springer-

Verlag, Berlin, Heidelberg, pp.497-513.

http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kulesza:Uir=aacute=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Mitschke:Ralf.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Moreira:Ana.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Royer:Jean=Claude.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Rummler:Andreas.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Sousa:Andr=eacute=.html

List of References

215

Benavides, D., Trinidad, P., Ruiz-Cortés, A. (2005). Automated Reasoning on Feature Models. In: Proceedings of

17th Conference on Advanced Information Systems Engineering (CAiSE'05) ,

Benavides, D., Segura, S., Antonio Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years later: A

literature review. Inf. Syst. 35, 6 (September 2010), 615-636. DOI=10.1016/j.is.2010.01.001

Berners-Lee, T., Connolly, D. (2011). Notation3 (N3): A readable RDF syntax,

http://www.w3.org/TeamSubmission/n3/, last visit 1/8/2012

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web: A New Form of Web Content that Is

Meaningful to Computers Will Unleash a Revolution of New Possibilities, Scientific American Journal, May 2001,

pp. 28–37

Bjørnson, F. O., Dingsøyr, T. (2008). Knowledge management in software engineering: A systematic review of

studied concepts, findings and research methods used. Inf. Softw. Technol. 50, 11 (October 2008), pp. 1055-1068.

DOI=10.1016/j.infsof.2008.03.006

Bontemps, Y., Heymans, P., Schobbens, P.-Y., Trigaux, J.-C. (2004). Semantics of FODA Feature Diagrams. In:

Workshop on Software Variability Management for Product Derivation Towards Tool Support, (T. Männistö & J.

Bosch, Eds.)System, (Theorem 2), pp. 48-58

Borgida, A. (2007). How knowledge representation meets software engineering (and often databases). Automated

Software Engg. 14, 4, pp. 443-464. DOI=10.1007/s10515-007-0018-0

Bosch J. (2009). From software product lines to software ecosystems, in: Proc. of the 13th International Software

Product Line Conference (SPLC 2009), Software Engineering Institute, CarnegieMellon, San Francisco, CA, USA,

2009, pp. 111– 119.

Bosch, J. (2000). Design and Use of Software Architectures: : Adopting and Evolving a Product-Line Approach,.

Addison-Wesley.

Bosch, J. (2005). Software Product Families in Nokia. In: 9th International Conference SPLC 2005 (2005).

Bosch, J. (2010). Toward compositional software product lines, IEEE Software 27 (3) pp.29–34.

Bray, I. (2002). An introduction to requirements engineering, Pearson Addison Wesley

Buhne, S., Lauenroth, K., Pohl, K. (2005). Modelling Requirements Variability across Product Lines. In Proceedings

of the 13th IEEE International Conference on Requirements Engineering (RE '05). IEEE Computer Society,

Washington, DC, USA, 41-52. DOI=10.1109/RE.2005.45 http://dx.doi.org/10.1109/RE.2005.45

Bylander, T. , Chandrasekaran, B. (1988). Generic Tasks in knowledge-based reasoning. the right level of

abstraction for knowledge acquisition. In: Knowledge Acquisition for Knowledge Based systems, pp. 65-77,

London: Academic Press

Cawley, C., Nestor, D., Preußner, A., Botterweck, G., Thiel, S. (2008). Interactive Visualisation to Support Product

Configuration in Software Product Lines, Proceedings of the 2nd International Workshop on Variability Modelling

of Software-Intensive Systems (VAMOS 2008), Essen, Germany, January 16-18, pp. 7-16. ISSN 1860-2770

Cawley, C., Botterweck, G., Healy, P., bin Abid, S., Thiel, St. (2009). A 3D Visualisation to Enhance Cognition in

Software Product Line Engineering. In Proceedings of the 5th International Symposium on Advances in Visual

Computing (ISVC '09), Part II ISVC (2), pp.857-868

Cawley, C., Healy, P., Botterweck, G., Thiel, St. (2010). Research Tool to Support Feature Configuration in

Software Product Lines, In proceedings of VaMoS 2010, pp. 179-182

Chen, L., Babar, M.A. (2010) Variability Management in Software Product Lines: An Investigation of

Contemporary Industrial Challenges. In Proceedings of the 14th international conference on Software product lines:

going beyond (SPLC'10), Jan Bosch and Jaejoon Lee (Eds.). Springer-Verlag, Berlin, Heidelberg, pp.166-180.

List of References

216

Chen, L., Babar, M.A., Ali, N. (2009). Variability management in software product lines: a systematic review. In

Proceedings of the 13th International Software Product Line Conference (SPLC '09). Carnegie Mellon University,

Pittsburgh, PA, USA, pp.81-90.

Chen, P. P. (1976). The Entity-Relationship Model - Toward a Unified View of Data, ACM Trans, Database Syst.

1(1): 9-36

Classen, A., Heymans, P., and Schobbens, P-Y. (2008). What's in a feature: a requirements engineering perspective.

In Proceedings of the Theory and practice of software, 11th international conference on Fundamental approaches to

software engineering(FASE'08/ETAPS'08), Fiadeiro, J. and Inverardi, P. (Eds.). Springer-Verlag, Berlin, Heidelberg,

pp.16-30.

Classen, A., Boucher, Q. and Heymans, P. (2011). A Text-based Approach to Feature Modelling: Syntax and

Semantics of TVL. In Science of Computer Programming, Special Issue on Software Evolution, Adaptability and

Variability, 76 (12): pp. 1130-1143Clauss ,M. (2001). Generic Modeling using UML extensions for variability. In

Workshop on Workshop on Domain-speci_c Visual Languages, OOPSLA 2001, pp. 11-18.

Clements, P. C., Northrop, L. M. (2002). A Software Product Line Case Study”, Technical Report CMU/SEI-2002-

TR-038

Codenie, W., González-Deleito, N., Deleu, J., Blagojevic, V., Kuvaja, P., Similä, P. (2009). A Model for Trading off

Flexibility and Variability in Software Intensive Product Development. In proceeding of: Third International

Workshop on Variability Modelling of Software-Intensive Systems, Seville, Spain, January 28-30, pp. 61-70.

Connolly, T. M. , Begg, C. E. (2009). Database Systems: A Practical Approach to Design, Implementation and

Management. Addison-Wesley, ISBN-10: 0321210255

Creps, R.E. , Simos, M. A. (1992). The STARS Conceptual Framework for Reuse Processes. In Proceedings of the

Fifth Annual Workshop on Software Reuse. Volume: 22091, Issue: 703, Citeseer

Crnkovic, I., Chaudron, M., Larsson, S. (2006). Component-Based Development Process and Component Lifecycle,

In: Proceedings of International Conference on Software Engineering Advances (ICSEA'06), pp.44

Czarnecki, K., Eisenecker, U.W. (2000). Generative Programming: Methods, Tools, and Applications. Addison

Wesley

Czarnecki, K., Helsen, S., Eisenecker, U. W. (2004). Staged Configuration Using Feature Models. In proceedings of

SPLC 2004. pp. 266-283

Czarnecki, K., Kim, C. H. P. (2005). Cardinality-Based Feature Modeling and Constraints: A Progress Report. In:

International Workshop on Software Factories at OOPSLA'05, San Diego, California, USA, ACM, 2005

Czarnecki, K., Kim, C. H. P., Kalleberg, K.T. (2006). Feature models are views on ontologies. In Proceedings of the

10th International on Software Product Line Conference (SPLC '06). IEEE Computer Society, Washington, DC,

USA, pp.41-51.

Czarnecki, K., Gruenbacher, P., Rabiser, R., Schmid, K., Wasowski, A. (2012).Cool Features and Tough Decisions:

A Comparison of Variability Modeling Approaches. In Proceedings of Variability Modelling of Software-intensive

Systems (VaMoS), Leipzig, Germany, ACM, New York, NY, USA, pp.173-182. DOI=10.1145/2110147.2110167.

David Beckett, Tim Berners-Lee, Turtle - Terse RDF Triple Language, http://www.w3.org/TeamSubmission/turtle/,

2011, last visit 1/8/2011

Davis, R., Shrobe, H., Szolovits, P. (1993). What is a Knowledge Representation? AI Magazine, 14(1):17-33

Della Valle, E., Ceri, S. (2011). Querying the Semantic Web: SPARQL. In: Handbook of Semantic Web

Technologies pp. 299-363, Springer-Verlag Berlin Heidelberg

Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T. (2010). Structuring the modeling space and supporting

evolution in software product line engineering, In: Journal of Systems and Software 83(7), pp.1108-1122

List of References

217

Dieste, O., Juristo, N., Moreno, A. M., Pazos, J., Sierra, A. (2002). Conceptual Modeling in Software Eng. and

Knowledge Eng.: Concepts, Techniques and Trends, In: Handbook of Software Engineering and Knowledge

Engineering, Publisher: World Scientific.

Doran, P., Tamma, V., Iannone, L. (2007). Ontology Module Extraction for Ontology Reuse: An Ontology

Engineering Perspective. In Proceedings of the ACM CIKM International Conference on Information and

Knowledge Management. November 6-9, 2007. Lisbon, Portugal

Dustdar, S., Schreiner, W. (2005). A survey on web services composition, International Journal of Web and Grid

Services, vol. 1, No. 1, pp. 1-30

Eén, N., Sörensson, N. (2003). An extensible SAT solver. In: 6th International Conference on Theory and

Applications of Satisfiability Testing, LNCS 2919, pp. 502-518

El Dammagh, M., De Troyer, O. (2011). Feature modeling tools: evaluation and lessons learned. In Proceedings of

the 30th international conference on Advances in conceptual modeling: recent developments and new directions

(ER'11), Olga De Troyer, Claudia Bauzer Medeiros, Roland Billen, Pierre Hallot, and Alkis Simitsis (Eds.).

Springer-Verlag, Berlin, Heidelberg, pp.120-129.

Eriksson, M., Börstler, J., Borg, K. (2005). The PLUSS Approach - Domain Modeling with Features, Use Cases and

Use Case Realizations. In: Proceedings of the 9'th International Conference on Software Product Lines (SPLC'05),

LNCS, Vol. 3714, pp. 33-44, Springer-Verlag.

Erwig, M. (1998). Abstract Syntax and Semantics of Visual Languages, Journal of Visual Languages &

Computing, Volume 9, Issue 5, October 1998, Pages 461-483, ISSN 1045-926X, 10.1006/jvlc.1998.0098

Fan, S. and Zhang, N. (2006). Feature model based on description logics. In: Knowledge-Based Intelligent

Information and Engineering Systems, Lecture Notes in Computer Sciences Vol. 4252/2006, pp. 1144-1151, DOI:

10.1007/11893004_145

Ferreira, N., Machado, R. J., Gasevic, D. (2009). An Ontology-Based Approach to Model-Driven Software Product

Lines. In: Proceedings of the 2009 Fourth International Conference on Software Engineering Advances (ICSEA '09).

IEEE Computer Society, Washington, DC, USA, pp. 559-564. DOI=10.1109/ICSEA.2009.88

Figl, K. and Derntl, M. (2011). The impact of perceived cognitive effectiveness on perceived usefulness of visual

conceptual modeling languages. In Proceedings of the 30th international conference on Conceptual modeling

(ER'11), Manfred A. Jeusfeld, Lois Delcambre, and Tok Wang Ling (Eds.), pp.78-91. Springer-Verlag, Berlin,

Heidelberg.

Finkelstein, A., Kramer, J., Nuseibeh, B. , Finkelstein, L., Goedicke, M. (1992). Viewpoints: A Framework for

Integrating Multiple Perspectives in System Development , Intl. J. of Software Engineering and Knowledge

Engineering 2(1), pp. 31–57

Forbus, K.D., De Kleer, J. (1993). Building Problem Solvers. MIT Press

Frakes, W. B., Díaz, R. P., Fox, C. J. (1998). DARE: Domain Analysis and Reuse Environment. In: Ann. Software

Eng. 5: pp. 125-141

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-oriented

Software. Addison-Wesley. ISBN-10: 0201633612

Garcia-Molina, H., Ullman, J. D.,Widom, J. (2008). Database Systems: The Complete Book (2 ed.). Prentice Hall

Press, Upper Saddle River, NJ, USA.

Gašević, D., Devedžić, V. (2006). Petri net ontology, In: Knowledge Based Systems, Vol. 19, No. 4, 2006, pp. 220-

234

Gene Ontology, http://www.geneontology.org/, last visit 1/8/2011

Gomaa, H. (2005). Designing Software Product Lines with UML: From Use Cases to Pattern-Based Software

Architectures, Addison-Wesley

List of References

218

Graham, T.C. N. (1996). Viewpoints Supporting the Development of Interactive Software. In: Proceedings of

Viewpoints 96: International Workshop on Multiple Perspectives in Software Development, ACM Press, San

Francisco, USA, pp. 263-267

Grenon, P. (2003). BFO in a nutshell: A bi-categorial axiomatization of BFO and comparison with DOLCE.

Technical Report 06/2003, IFOMIS, University of Leipzig.

Griss, M. L., Favaro, J., d’Alessandro, M. (1998). Integrating Feature Modeling with the RSEB, Proc. Fifth

International Conference on Software Reuse, pp. 76-85, Victoria, BC, Canada

Griss, M. L., (2000). Implementing Product-Line Features with Component Reuse. In Proceedings of the 6th

International Conerence on Software Reuse: Advances in Software Reusability (ICSR-6), William B. Frakes (Ed.).

Springer-Verlag, London, UK, pp.137-152.

Grönniger, H., Ringert, J. O., Rumpe, B. (2009). System Model-Based Definition of Modeling Language Semantics.

In Proceedings of the Joint 11th IFIP WG 6.1 International Conference FMOODS '09 and 29th IFIP WG 6.1

International Conference FORTE '09 on Formal Techniques for Distributed Systems (FMOODS '09/FORTE '09).

Springer-Verlag, Berlin, Heidelberg, pp.152-166.

Gruber, T. R. (1993). Toward principles for the design of ontologies used for knowledge sharing. Presented at the

Padua workshop on Formal Ontology, March 1993, later published in International Journal of Human-Computer

Studies, Vol. 43, Issues 4-5, pp. 907-928

Gruber, T. (2008). Ontology, Encyclopedia of Database Systems, Ling Liu and M. Tamer Özsu (Eds.), Springer-

Verlag.

Günther, S., Sunkle, S. (2012). rbFeatures: Feature-oriented programming with Ruby. Sci. Comput. Program. 77(3):

pp.152-173

Haarslev, V., Möller, R. (2001). RACER system description. In: Proceedings of the First International Joint

Conference on Automated Reasoning (IJCAR 2001), Siena. Lecture Notes in Artificial Intelligence, vol. 2083, pp.

701–705. Springer, Berlin

Haarslev, V., Möller, R. (2003). Racer: A Core Inference Engine for the Semantic Web. In Proceedings of the 2nd

International Workshop on Evaluation of Ontology-based Tools (EON2003), pp. 27-36

Halpin, T. A., and Bloesch, A. C. (1999). Data Modeling in UML and ORM: A Comparison. J. Database Manag.

10(4): pp. 4-13

Halpin, T. , Morgan, T. (2008). Information Modeling and Relational Databases, Second Edition (ISBN: 978-0-12-

373568-3), Morgan Kaufmann, 2008

Harel, D., Rumpe, B. (2004). Meaningful Modeling: What’s the Semantics of “Semantics”? In: Computer 37(10),

pp. 64–72. DOI=10.1109/MC.2004.172

Hartmann, H., and Trew, T. (2008). Using Feature Diagrams with Context Variability to Model Multiple Product

Lines for Software Supply Chains. In Proceedings of the 2008 12th International Software Product Line Conference

(SPLC '08). IEEE Computer Society, Washington, DC, USA, 12-21. DOI=10.1109/SPLC.2008.15

Hayes-Roth., F., (1985). Rule-Based Systems. In: Commun. ACM, pp. 921-932

Hebeler, J., Fisher, M., Blace, R., Perez-Lopez. A. (2009). Semantic Web Programming, Wiley Publishing, ISBN:

978-0-470-41801-7

Heidenreich, F., and Wende, C. (2007). Bridging the Gap Between Features and Models. In Proceedings of the

Second Workshop on Aspect-Oriented Product Line Engineering (AOPLE'07) co-located with the International

Conference on Generative Programming and Component Engineering (GPCE'07), Salzburg, Austria, October 2007.

Heidenreich, F., Kopcsek, J., Wende, and C. (2008). FeatureMapper: Mapping Features to Models. In Companion

Proceedings of the 30th International Conference on Software Engineering (ICSE'08), Leipzig, Germany, May 2008.

http://www.arnetminer.org/expertisesearch.do?searchBtnType=lucky&keyword=Frederick%20Hayes-Roth
http://www.arnetminer.org/viewpub.do?pid=772646

List of References

219

Heidenreich, F., Şavga, I. Wende, C. (2008). On Controlled Visualisations in Software Product Line Engineering. In

Proceedings of the 2nd International Workshop on Visualisation in Software Product Line Engineering (ViSPLE

2008), collocated with the 12th International Software Product Line Conference (SPLC 2008), Limerick, Ireland,

September 2008.

Heineman, G.T., Councill, G.T. (2001). Component-Based Software Engineering: Putting the Pieces Together.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. ISBN 0-201-70485-4

Hendler, J., and van Harmelen, F. (2008). The Semantic Web: Webizing Knowledge Representation. In: Foundations

of Artificial Intelligence, vol. 3, Handbook of Knowledge Representation, pp. 821-839

Hevner, A., and Chatterjee, S. (2010). Design Research in Information Systems, Springer Publishing Company,

Incorporated. ISBN:1441956522 9781441956521

Heymans, P., Boucher Q., Classen A., Bourdoux, A., Demonceau, L. (2012). A code tagging approach to software

product line development - An application to satellite communication libraries. STTT 14(5): pp.553-566

Holl, G., Grünbacher, P., Rabiser, R. (2012) A systematic review and an expert survey on capabilities supporting

multi product lines. Information & Software Technology 54(8): pp.828-852

Horrocks, I., Patel-Schneider, P. F. (2010). KR and Reasoning on the Semantic Web: OWL. In: Handbook of

Semantic Web Technologies. chapter 9. Springer

Horrocks, I. Sattler, U., Tobies, S. (1999). Practical Reasoning for Expressive Description Logics. In Ganzinger, H.;

McAllester, D.; and Voronkov, A., eds., Proc. Of LPAR-6, vol. 1705 of LNAI, pp. 61–180. Springer.

Horrocks, I., Kutz, O., Sattler, U. (2006). The Even More Irresistible SROIQ. In: Proceedings of the 10th Int. Conf.

on Principles of Knowledge Representation and Reasoning (KR 2006), pp.57-67. AAAI Press

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M. (2004). SWRL: A Semantic Web

Rule Language Combining OWL and RuleML , http://www.w3.org/Submission/SWRL, last visit 1/3/2011

Horrocks, I., Patel-Schneider, P. F., van Harmelen, F. (2003). From SHIQ and RDF to OWL: The Making of a Web

Ontology Language. In: Journal of Web Semantics, vol 1(1): pp.7-26

Hubaux, A., Boucher, Q., Hartmann, H., Michel, R., Heymans, P. (2010 a). Evaluating a textual feature modelling

language: four industrial case studies. In Proceedings of the Third international conference on Software language

engineering (SLE'10), Brian Malloy, Steffen Staab, and Mark Van Den Brand (Eds.). Springer-Verlag, Berlin,

Heidelberg, pp. 337-356.

Hubaux, A., Classen, A., Mendonca, M., Heymans, P. (2010 b). A Preliminary Review on the Application of Feature

Diagrams in Practice. In: Proceedings of the Fourth Workshop on Variability Modelling of Software-intensive

Systems (VaMoS'10), pp. 53-59

Hubaux, A., Heymans, P., Schobbens, P-Y., Deridder, D. (2011). Supporting multiple perspectives in feature-based

configuration. Software and Systems Modeling (SoSyM), pp.1-23, DOI 10.1007/s10270-011-0220-1

Jacobson, I., Griss, M., Jonsson, P. (1997). Software Reuse: Architecture, Process and Organization for Business

Success, Addison- Wesley-Longman

Janota, M., Kiniry, J. (2007). Reasoning about Feature Models in Higher-Order Logic. In: Proceedings of 11th

International Software Product Lines Conference (SPLC 2007).

Jaring, M., Krikhaar, R. L., Bosch, J. (2004). Representing variability in a family of MRI scanners, In: Software—

Practice & Experience, vol. 34 , Issue 1 , pp. 69 - 100

Jarrar, M., Demey, J., Meersman, R. (2003). On Using Conceptual Data Modeling for Ontology Engineering,

Lecture Notes in Computer Science, Vol. 2800, pp. 185-207

List of References

220

Jekjantuk, N., Pan, J.Z., Qu, Y. (2011). Diagnosis of Software Models with Multiple Levels of Abstraction Using

Ontological Metamodeling. In Proc. of the 35th IEEE Annual Computer Software and Applications Conference

(COMPSAC 2011).

Johansen, M. F., Fleurey, F., Acher, M., Collet, P., Lahire, P. (2010) . Exploring the Synergies Between Feature

Models and Ontologies. In Proceedings of the 14th International Software Product Line Conference. Volume 2 -

Workshops, Industrial track, Doctoral symposium, Demonstrations and Tools. vol 2, pp. 163–171. Lancester

University, September 2010

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A. (1990). Feature-oriented domain analysis (FODA) feasibility

study. Technical Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie-Mellon University

Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). FORM: A Feature-Oriented Reuse Method with

Domain-Specific Reference Architectures. In: J. Annals of Software Engineering. vol. 5, pp. 143-168.

Kang, K.C., Lee, J., Donohoe, P. (2002) .Feature-Oriented Product Line Engineering, IEEE Software, vol. 19, no.

4, pp. 58-65, July/Aug. doi:10.1109/MS.2002.1020288

Keet, C.M. (2007). Mapping the Object-Role Modeling language ORM2 into Description Logic language DLRifd.

KRDB Research Centre Technical Report KRDB07-2, Faculty of Computer Science, Free University of Bozen-

Bolzano, Italy.

Keet, C.M. (2008). A formal comparison of conceptual data modeling languages. 13th International Workshop on

Exploring Modeling Methods in Systems Analysis and Design (EMMSAD'08). Montpellier, France, 16-17 June

2008. CEUR-WS Vol-337, pp25-39

Kendal, S., and Creen, M. (2007). An Introduction to Knowledge Engineering, ISBN 13: 978-1-84628-475-5,

Springer-Verlag

Kersten, G. E., Kersten, M., Rakowski, W. M. (2002). Software and Culture: Beyond the Internationalization of the

Interface. In JGIM. Vol. 10(4). pp. 86-101

Kersten, G. E., Matwin, S., Noronha, S. J., Kersten, M. (2000). The Software for Cultures and the Cultures in

Software. ECIS 2000, pp. 509-514

Kimiz, D. (2005). Knowledge Management in Theory and Practice. Elsevier Butterworth-Heinemann

Kolovos, D.S., Paige, R.F., Polack, F.A.C. (2006). Merging Models with the Epsilon Merging Language (EML), In:

Proceedings of ACM/IEEE 9th International Conference on Model Driven Engineering Languages and Systems

(Models/UML 2006).

Korherr, B. , and List, B. (2007). A UML 2 Profile for Variability Models and their Dependency to Business

Processes. DEXA Workshops 2007: pp 829-834, ISBN: 0769529321, DOI: 10.1109/DEXA.2007.96

Kossmann, M., Wong, R., Odeh, M., Gillies, A. (2008). Ontology-driven requirements engineering: building the

OntoREM meta model. 3rd International Conference on Information and Communication Technologies: From

Theory to Applications, 2008. ICTTA 2008. pp. 1-6.

Kotiadis, K., and Robinson, S. (2008). Conceptual modelling: Knowledge acquisition and model abstraction. In:

Proceedings of Winter Simulation Conference, pp. 951-958

Kulak, D., and Guiney, E. (2003). Use Cases: Requirements in Context, Second Edition, Addison-Wesley

Professional

Lee, K., Kang, K. C., Lee, J. (2002). Concepts and Guidelines of Feature Modeling for Product Line Software

Engineering. In: Proceedings of the 7th International Conference on Software Reuse: Methods, Techniques, and

Tools (ICSR-7), Cristina Gacek (Ed.). Springer-Verlag, London, UK, UK, pp. 62-77.

Lee, S.-B., Kim, J.-W., Song, C.-Y., Baik, D.-K. (2007). An Approach to Analyzing Commonality and Variability of

Features using Ontology in a Software Product Line Engineering. SERA 2007. pp: 727-734

List of References

221

Leenen, W., Vlaanderen, K., van de Weerd, I., Brinkkemper, S. (2012). Transforming to Product Software: The

Evolution of Software Product Management Processes during the Stages of Productization. In Proceedings of

ICSOB 2012: 40-54

Lim, E. H. Y., James, L. N. K., , Raymond S.T., L. (2011). Knowledge Seeker - Ontology Modelling for

Information Search and Management A Compendium, Series: Intelligent Systems Reference Library, vol. 8,

Springer-Verlag.

Lopez-Herrejon, R.E., Batory, D. (2001). A Standard Problem for Evaluating Product-Line Methodologies. In:

Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 9–13

Maccari, A., and Heie, A. (2005). Managing infinite variability in mobile terminal software. In: Research Articles.

Softw. Pract. Exper. vol. 35, 6 (May 2005), pp. 513-537. DOI=10.1002/spe.v35:6

http://dx.doi.org/10.1002/spe.v35:6

MacGregor, J. (2002). Bosch Experience Report, http://www.conipf.org/download/BoschExperienceReport.pdf, last

visit 1/3/2011

Mannion, M., Savolainen, J. , Asikainen, T. (2009). Viewpoint-Oriented Variability Modeling, In: Proceedings of

International Computer Software and Applications Conference (COMPSAC’09), pp. 67–72

March, S., Smith, G. (1995). Design and natural science research on information technology. Decis. Support

Syst. 15, 4 (December 1995), pp. 251-266. DOI=10.1016/0167-9236(94)00041-2

Menéndez, V. H., and Prieto, M.E. (2008). A Learning Object Composition Model, In: Proceedings of UNISCON

2008, pp. 469-474

Mohan, K., and Ramesh, B. (2003). Ontology-Based Support for Variability Management in Product and Service

Familie. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences (HICSS'03) -

Track 3 - Volume 3 (HICSS '03), vol. 3. IEEE Computer Society, Washington, DC, USA

Moody, D. L. (2010). The "physics" of notations: a scientific approach to designing visual notations in software

engineering. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2

(ICSE '10), Vol. 2. ACM, New York, NY, USA, 485-486. DOI=10.1145/1810295.1810442

Moody, D. L. (2003). The method evaluation model: a theoretical model for validating information systems design

methods. In proceedings of ECIS 2003, pp. 1327-1336

Motik, B., Shearer, R., Horrocks, I. (2007) Optimized reasoning in description logics using hypertableaux. In:

Proceedings of the 21st International Conference on Automated Deduction (CADE-21), Breman. Lecture Notes in

Artificial Intelligence, vol. 4603, pp. 67–83. Springer, Berlin

Mylopoulos, J. (2001). Conceptual Modeling for Knowledge Management: A Tutorial, In proceedings 9th IFIP 2.6

working conference on database semantics.

N triples, http://www.w3.org/TR/rdf-testcases/#ntriples, 2004, last visit1/3/ 2011

Navathe, B. S., and Schkolnick, M. (1978). View representation in logical database design. In Proceedings of the

1978 ACM SIGMOD international conference on management of data (SIGMOD '78). ACM, New York, NY, USA,

144-156. DOI=10.1145/509252.509286

Neighbors, J. (1984). The Draco Approach to Construction Software from Reusable Components, In: IEEE

Transactions on Software Engineering SE-10, vol. 5, pp. 564-573

Nestor, D., Thiel, S., Botterweck, G., Cawley, C., Healy, P. (2008). Applying visualisation techniques in software

product lines. SOFTVIS 2008: pp.175-184

Niemelä, I. , and Simons, P. (1997). Smodels - an implementation of the stable model and well-founded semantics

for normal logic programs. In: Proceedings of the 4th International Conference on Logic Programming and

Nonmonotonic Reasoning, vol. 1265 of Lecture Notes in Artificial Intelligence, pp. 420-429

List of References

222

Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M., Schmidt,

D., Sullivan K., Wallnau, K. (2006) Ultra-Large-Scale Systems – The Software Challenge of the Future: Software

Engineering Institute, Carnegie Mellon, June 2006.

Noy, N. F., McGuinness, D. L. (2001). Ontology Development 101: A Guide to Creating Your First Ontology.

Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical

Report SMI-2001-0880

Nuseibeh, B., Easterbrook, S., Russo, A. (2001) Making inconsistency respectable in software development. In

Journal of Systems and Software, Volume 58, Issue 2, 1 September 2001, Pages 171-180, ISSN 0164-1212,

10.1016/S0164-1212(01)00036-X.

Nuseibeh, B., Kramer , J., Finkelstein, A.C.W. (1994). A framework for expressing the relationships between

multiple views in requirements specification. In Trans. Software Eng., 20 (10) . pp. 760–773

Nuseibeh, B., Kramer, J., Finkelstein ,A. (2003). ViewPoints: Meaningful Relationships Are Difficult!. In:

Proceedings of International Conference on Software Engineering (ICSE'03)

Nyström, D., Tesanovic, A., Nolin, M., Norström, C., Hansson, J. (2004) COMET: A Component-Based Real-Time

Database for Automotive Systems. In Proceedings of the Workshop on Software Engineering for Automotive

Systems at 26th International Conference on Software engineering (ICSE'04), IEEE Computer Society Press.

Oberle, D., Lamparter, S., Grimm, S., Vrandečić, D., Staab, S., Gangemi, A. (2006). Towards ontologies for

formalizing modularization and communication in large software systems. Appl. Ontol. 1, 2, pp.163-202.

Object Constraint Language (OCL), http://www.omg.org/technology/documents/formal/ocl.htm

Ossher, H., Tarr, P. (2001). Using Multidimensional Separation of Concerns to (re)shape Evolving Software. In:

Communications of the ACM, vol. 44, pp. 43-49

OWL 2 Web Ontology Language Document Overview http://www.w3.org/TR/owl2-overview/, 2009, last visit

1/3/2011

OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/, 2004, last visit1/3/ 2011

Pahl, C.: Ontology Transformation and Reasoning for Model-Driven Architecture. OTM Conferences (2) 2005:

1170-1187

Palmer, S. R., and Felsing, J. M. (2001) . A Practical Guide to Feature-Driven Development, Prentice Hall,

ISBN:0130676152

Patel-Schneider, P. F., and Horrocks, I. (2004) OWL Web Ontology Language, Semantics and Abstract Syntax,

http://www.w3.org/TR/2004/REC-owl-semantics-20040210/direct.html#owl_allValuesFrom_semantics

Peffers, K., Tuunanen, T., Rothenberger, M. A., Chatterjee, S. (2008). A Design Science Research Methodology for

Information Systems Research. J. Manage. Inf. Syst. 24, 3, pp. 45-77. DOI=10.2753/MIS0742-1222240302

Peng, X., Zhao, W., Xue, Y., Wu, Y. (2006). Ontology-Based Feature Modeling and Application-Oriented Tailoring.

In: ICSR 2006, pp. 87-100

Pettersson, U., Jarzabek, S., (2005). Industrial Experience with Building a Web Portal Product Line using a

Lightweight, Reactive Approach. In: Proceedings of ESEC-FSE'05, European Software Engineering Conference

and ACM SIGSOFT Symposium on the Foundations of Software Engineering, ACM

Pizza ontology, http://www.co-ode.org/ontologies/pizza/2007/02/12/, last visit1/3/ 2011

Pohl, K., Böckle, G., van der Linden, F. (2005). Software Product Line Engineering: Foundations, Principles, and

Techniques, Springer, ISBN 10-3-540-24372-0.

Poels, G., Maes, A., Gailly, F., Paemeleire, R. (2005). Measuring the perceived semantic quality of information

models. In Proceedings of the 24th international conference on Perspectives in Conceptual Modeling (ER'05), Jacky

http://www.informatik.uni-trier.de/~ley/db/conf/otm/otm2005-2.html#Pahl05

List of References

223

Akoka, Stephen W. Liddle, Il-Yeol Song, Michela Bertolotto, and Isabelle Comyn-Wattiau (Eds.). Springer-Verlag,

Berlin, Heidelberg, pp.376-385.

Preece, A. Flett, A. Sleeman, D. Curry, D. Meany, N. Perry, P. (2001). Better Knowledge Management through

Knowledge Engineering. IEEE Intelligent Systems 16(1), pp 36-43

Puttemans, T. (2011). Querying and Exploring a Feature Pool, MSc. Thesis, Vrije Universiteit Brussel

Rabiser, R., Grünbacher P., Dhungana D. (2010) Requirements for product derivation support: Results from a

systematic literature review and an expert survey. Information and Software Technology, Volume 52, Issue 3, March

2010, pp. 324-346, ISSN 0950-5849, 10.1016/j.infsof.2009.11.001

RDF Primer, http://www.w3.org/TR/rdf-primer/, 2004 , last visit 1/3/ 2011

RDF/XML , http://www.w3.org/TR/rdf-syntax-grammar/, 2004, last visit1/3/ 2011

Rector, A., Napoli, A., Stamou, G., Stoilos, G., Wolger, H., Pan, J. , D'Aquin, M., Spaccapietra, S., Tzouvaras, V.

(2005). Report on modularization of ontologies. Technical report, Knowledge Web Deliverable, D2.1.3.1

Reiser, M.-O. and Weber, M.(2006). Managing Highly Complex Product Families with Multi-Level Feature Trees.

In Proceedings of the 14th IEEE International Requirements Engineering Conference (RE '06). IEEE Computer

Society, Washington, DC, USA, pp. 146-155.

Riebisch. M., Böllert, K., Streitferdt, D., Philippow, I. (2002). Extending Feature Diagrams with UML Multiplicities.

6th Conference on Integrated Design & Process Technology, Pasadena, California, USA. June 23 – 30, 2002 (IDPT

2002)

Riebisch, M. (2003). Towards a more precise definition of feature models. In: Modelling Variability for Object-

Oriented Product Lines. BookOnDemand Publ. Co, Norderstedt , pp. 64-76

Riebisch, M., Streitferdt, M. Pashov, I. (2004). Modeling Variability for Object-Oriented Product Lines. In: Frank,B,

Alejandro, B., Mariano, M. (Ed.): Object-Oriented Technology. ECOOP 2003 Workshop Reader. Springer, Lecture

Notes in Computer Science , vol. 3013, pp. 165 – 178

Robak, S. (2003). Modeling Variability for Software Product Families. In: Riebisch, M.; Coplien, J.O.; Streitferdt,

D. (eds.): Modelling Variability for Object-Oriented Product Lines. Publ. Co., Norderstedt, ISBN 3-8330-0779-6.

pp. 32-41

Robillard., P. N. (1999). The role of knowledge in software development. In Commun. ACM 42, 1 (January 1999),

pp. 87-92. DOI=10.1145/291469.291476

Rosenmüller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T., Spinczyk, O. , Saake, G. (2008).

FAME-DBMS: Tailor-made Data Management Solutions for Embedded Systems. In: Proceedings of EDBT

Workshop on Software Engineering for Tailor-made Data Management (SETMDM), pages 1–6. ACM Press.

Rosenmüller, M., Apel, S., Leich, T., Saake, G. (2009) Tailor-made data management for embedded systems: A

case study on Berkeley DB. Data & Knowledge Engineering ,Vol 68, Issue 12, pp. 1493-1512.

Rosenmüller, M., Siegmund, N., Thüm, Th., Saake, G. (2011). Multi-Dimensional Variability Modeling. In

Proceedings of the Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pp. 11-20. Namur,

Belgium. ACM Press, Jan. 2011.

Russell, S.J., and Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2 ed.). Pearson Education.

ISBN:0137903952

Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M, Chechik, M. (2007). Consistency Checking of Conceptual

Models via Model Merging. In: Proceedings of IEEE International Conference on Requirements Engineering

(RE'07): pp.221-230

Savolainen, J., Kuusela, J., Mannion, M., Vehkomäki, T. (2008). Combining Different Product Line Models to

Balance Needs of Product Differentiation and Reuse. ICSR 2008. pp.116-129

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-syntax-grammar/

List of References

224

Schmid, K. and John, I.. (2004). A customizable approach to full lifecycle variability management. Sci. Comput.

Program. 53, 3 (December 2004), 259-284. DOI=10.1016/j.scico.2003.04.002

Schmid, K., Rabiser, R., Grünbacher, P. (2011). A comparison of decision modeling approaches in product lines. In

Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems (VaMoS '11). ACM, New

York, NY, USA, pp. 119-126. DOI=10.1145/1944892.1944907

Schobbens, P. , Heymans, P., Trigaux, J-C., Bontemps, Y. (2007). Generic semantics of feature diagrams, In:

Computer Networks, Volume 51, Issue 2, pp. 456-479

Schreiber, G. (2008). Knowledge Engineering, Handbook of Knowledge Representation, chapter 25, Eds F. van

Harmelen, V. Lifschitz and B. Porter, Elsevier

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W., Wielinga, B. (2000).

Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, ISBN 0262193000..

Schroeter, J., Lochau, M., Winkelmann, T. (2012). Multi-perspectives on Feature Models. In Proceedings of the 15th

international conference on Model Driven Engineering Languages and Systems (MODELS'12), Robert B. France,

Jürgen Kazmeier, Ruth Breu, and Colin Atkinson (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 252-268.

DOI=10.1007/978-3-642-33666-9_17

Sebastian, A., Noy, N. F., Tudorache, T., Musen, M. A. (2008). A Generic Ontology For Collaborative Ontology-

Development Workflows, 16th International Conference on Knowledge Engineering and Knowledge Management

(EKAW 2008), Catania, Italy, Springer. Published in 2008

Segura, S., Benavides, D., Trinidad, P., Ruiz-Cortés, A. (2007) Automated Merging of Feature Models using Graph

Transformations. In: Post-proceedings Summer School on Generative and Transformational Techniques in Software

Engineering (GTTSE'07)

Sellier, D. and Mannion, M. (2007). Visualising Product Line Requirement Selection Decision Inter-dependencies.

In Proceedings of the Second International Workshop on Requirements Engineering Visualization (REV '07). IEEE

Computer Society, Washington, DC, USA

Shapiro, S. (2001). Classical Logic II: Higher Order Logic. In Lou Goble, ed., The Blackwell Guide to Philosophical

Logic. Blackwell, ISBN 0-631-20693-0

Siegmund, N., Kästner, C., Rosenmüller, M., Heidenreich, F., Apel, S., Saake, G. (2009). Bridging the Gap between

Variability in Client Application and Database Schema. BTW 2009, pp. 297-306.

Simon, H.A. (1981). The Sciences of the Artificial (2nd Ed.). MIT Press, Cambridge, MA, USA. ISBN:0-262-

69191-4

Sinnema, M., and Deelstra, S. (2007). Classifying Variability Modeling Techniques, In: Elsevier Journal on

Information and Software Technology, vol. 49, Issue 7, pp. 717 -739

Sirin, E., Parsia, B.,CuencaGrau, B.,Kalyanpur, A., Katz, Y. (2007). Pellet: a practical OWL-DL reasoner. J. Web

Semant. Vol. 5(2), pp.51–53

Software Productivity Consortium Services Corporation, Technical Report SPC-92019-CMC. Reuse-Driven

Software Processes Guidebook, Version 02.00.03, 1993. http://www.dtic.mil/cgi-

bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA273644

Sowa, J. F. (1992). Semantic networks, In: Encyclopedia of Artificial Intelligence, edited by S. C. Shapiro, Wiley,

New York, 1987; revised and extended for the second edition, 1992

Space ontology, http://sweet.jpl.nasa.gov/ontology/space.owl, last visit 1/3/2011

Spyns, P. (2005). Object role modelling for ontology engineering in the DOGMA framework. In Proceedings of the

2005 OTM Confederated international conference on On the Move to Meaningful Internet Systems (OTM'05),

Robert Meersman, Zahir Tari, and Pilar Herrero (Eds.). Springer-Verlag, Berlin, Heidelberg, 710-719.

DOI=10.1007/11575863_90 http://dx.doi.org/10.1007/11575863_90

http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA273644
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA273644
http://sweet.jpl.nasa.gov/ontology/space.owl
http://dx.doi.org/10.1007/11575863_90

List of References

225

Srivastava, B., and Koehler, J. (2003). Web service composition - current solutions and open problems, In:

Proceedings of ICAPS 2003

Svahnberg, M., and Bosch, J. (1999). Evolution in software product lines: Two cases. In: Journal of Software

Maintenance: Research and Practice vol. 11 , Issue 6

Svahnberg, M., van Gurp, J., Bosch, J. (2005). A Taxonomy of Variability Realization Techniques. in Software

Practice & Experience, 35(8). pp.705-754.

Synthesis. (1993). Software Productivity Consortium Services Corporation, "Reuse- Driven Software Processes,"

Technical Report SPC-92019-CMC, Version 02.00.03, November 1993

Tarr, P., Ossher, H., Harrison, W., Sutton, J. S. M.(1999). N Degrees of Separation: Multi-Dimensional Separation

of Concerns. In Proc. Int’l. Conf. Software Engineering (ICSE), pp. 107–119. IEEE CS

Tesanovic, A., Sheng, K., Hansson, J. (2004) Application-Tailored Database Systems: a Case of Aspects in an

Embedded Database. In: Proceedings of the 8th International Database Engineering and Applications Symposium

(IDEAS'04), IEEE Computer Society.

Time Ontology in OWL, http://www.w3.org/TR/owl-time/, 2006, last visit 1/3/ 2011

Tracz , W., Coglianese, L., and Young, P. (1993). Domain specific SW architecture engineering. Software

Engineering Notes, vol.18(2)

Trinidad, P., Cortés, A. R., Benavides, D., Segura, S. (2008).Three-Dimensional Feature Diagrams Visualization. In

Proceedings of Software Product Lines, 12th International Conference, SPLC 2008, Limerick, Ireland, September 8-

12, pp. 295-302.

Tsarkov, D., Horrocks, I. (2006). FaCT++ description logic reasoner: system description. In: Proceedings of the

Third International Joint Conference on Automated Reasoning (IJCAR 2006), Seattle. Lecture Notes in Artificial

Intelligence, vol. 4130, pp. 292–297. Springer, Berlin

Tun, T. T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P. (2009) Relating requirements and feature

configurations: a systematic approach. In Proceedings of the 13th International Software Product Line Conference

(SPLC '09). Carnegie Mellon University, Pittsburgh, PA, USA, 201-210

Van Gurp, J., Bosch, J., and Svahnberg, M. (2001). On the Notion of Variability in Software Product Lines. In

Proceedings of the Working IEEE/IFIP Conference on Software Architecture (WICSA '01). IEEE Computer Society,

Washington, DC, USA

van Lamsweerde, A. (2009) Requirements Engineering From System Goals to UML Models to Software

Specifications, ISBN 978-0-470-01270-3, January 2009

van Ommering ,R. (2000). Beyond product families: building a product population. In Proceedings of the

International Workshop on Software Architectures for Product Families (IW-SAPF-3), Springer, Las Palmas de Gran

Canaria, Spain, 2000, pp. 187–198.

van Ommering, R. (2002). Building Product Populations with Software Components. In Proceedings of 24th

International Conference on Software Engineering, Orlando, Florida, September 2002, pp. 255-265.

van Ommering, R. C., Bosch, J. (2002). Widening the Scope of Software Product Lines - From Variation to

Composition. In Proceedings of the Second International Conference on Software Product Lines (SPLC 2), Gary J.

Chastek (Ed.). Springer-Verlag, London, UK, UK, pp.328-347.

van Ommering, R. (2005). Software Reuse in Product Populations. IEEE Trans. Softw. Eng. 31, 7 (July 2005), pp.

537-550. DOI=10.1109/TSE.2005.84

von der Massen, T., Lichter, H. (2004). Deficiencies in feature models. In: T. Mannisto, J. Bosch (Eds.), Workshop

on Software Variability Management for Product Derivation - Towards Tool Support

W3C, The Semantic Web Made Easy, http://www.w3.org/RDF/Metalog/docs/sw-easy, last visit1/3/ 2011

http://www.w3.org/TR/owl-time/
http://www.w3.org/RDF/Metalog/docs/sw-easy

List of References

226

Walter, T., Parreiras, F.S., Gröner, G.,Wende, C. (2010). OWLizing: Transforming Software Models to Ontologies.

In Proceedings of Ontology-Driven Software Engineering, ODiSE'10, ACM Wand, Y. and Weber, R. (1993). On the

Ontological Expressiveness of Information Systems Analysis and Design Grammars, Journal of Information

Systems, vol. 3, pp. 217-237.

Wand, Y. and Weber, R. (1993). On the ontological expressiveness of information systems analysis and design

grammars. Journal of Information Systems, 3, pp.217-237.

Wand, Y., and Weber, R. (2002).Research Commentary: Information Systems and Conceptual Modeling — A

Research Agenda. Info. Sys. Research 13, 4 (December 2002), pp.363-376. DOI=10.1287/isre.13.4.363.69.

Wang , J. A. (2000). Towards component-based software engineering. In Proceedings of the eighth annual

consortium on Computing in Small Colleges Rocky Mountain conference. Consortium for Computing Sciences in

Colleges, USA, pp. 177-189.

Wang, H., Li, Y., Sun, J., Zhang, H., Pan, J. (2005). A semantic web approach to feature modeling and verification.

In: Proceedings of Workshop on Semantic Web Enabled Software Engineering (SWESE’05)

Weiler, T. (2003). Modelling Architectural Variability for Software Product Lines. In Proceedings of Software

Variability Management ICSE2003 Workshop, SVM 2003, Groningen, IWI 2003-7-01, The Netherlands, pp.5-12.

Welzer, T., Stiglic, B., Rozman, I., Družovec, M. (1999) Reusable Conceptual Models as a Support for the Higher

Information Quality, ICPQR99

Wielinga, B. J., Van de Velde, W. , Schreiber, A. Th., Akkermans , J. M. (1992).The KADS knowledge modelling

approach. In R. Mizoguchi, H. Motoda, J. Boose, B. Gaines, and R. Quinlan, editors, Proceedings of the 2nd

Japanese Knowledge Acquisition for Knowledge-Based Systems Workshop, pages 23-42. Hitachi, Advanced

Research Laboratory, Hatoyama, Saitama, Japan

Witte, R., Zhang, Y., Rilling, J. (2007). Empowering Software Maintainers with Semantic Web Technologies. In

Proceedings of the 4th European Semantic Web Conference, pp. 37-52. Springer.

Woods, E. (2004). Experiences Using Viewpoints for Information Systems Architecture: An Industrial Experience

Report. In: Proceedings of EWSA 2004: pp. 182-193, 2004

Ye, H.; Liu, H. (2005). Approach to modelling feature variability and dependencies in software product lines. In:

Software,IEE Proceedings -Volume 152, Issue 3, pp.101-109

Zave, P. (2004). FAQ Sheet on Feature Interaction, http://www.research.att.com/~pamela/faq.html, last visit1/2/

2010

Ziadi, T., Hélouët, L., Jézéquel ,J.-M. (2003). Towards a UML Profile for Software Product Lines, In Software

Product-Family Engineering, 5th International Workshop. Seana / Italy, 2003, Springer LNCS 3014, pp. 129-139,

Springer-Verlag.

http://www.research.att.com/~pamela/faq.html

Appendix A: A Conceptual Model of Mainstream Feature Models

227

Appendix A

A Conceptual Model of Feature Mainstream

Models

As part of our study to understand mainstream feature models we defined a conceptual

model of feature models. The defined conceptual model is a largest dominator for the existing

feature modelling techniques. It shows the basic concepts of feature models and how they relate

to each other. It is represented using the ORM (Object Role Modelling) data modelling

technique. Figure A.1 shows the defined conceptual schema for feature models using the ORM

representation.

Figure A. 2 Conceptual model of feature models

The basic construct is the feature, which represents a software feature. It has two types

of classification, one based on its composition with respect to other features and one based on

how it contributes to the software functionalities. Based on the composition, it is either a

Appendix A: A Conceptual Model of Mainstream Feature Models

228

composed feature or an elementary feature. This is represented in the conceptual model by

means of the Object Type Feature having two subtypes Elementary Feature and Composed

Feature. A composed feature is a feature that is further decomposed into other finer grained

features. An elementary feature is a leaf feature, which is not further decomposed. Based on

how features contribute to the software functionalities, features are classified according to their

role in the system (several classifications exist). We merged the classification of features and

choose the most common classifications ones: functional feature, parameter feature, external

feature, and interface feature. A functional feature is a feature that contributes to the programs

functionality. A parameter feature is a feature that represents some parameterized characteristic

in the software and is usually associated with a value. An external feature is a feature that

represents an external attribute which interacts with the software or contributes to it. An

interface feature is a feature on the boundary of the software system and the external

surroundings; furthermore it provides a connection point between the software and its

surroundings (surroundings could be users or other devices). The different features are

represented in the conceptual model by means of the subtypes Functional Feature, Parameter

Feature, External Feature, and Interface Feature.

 A feature can have a value associated with it; this is represented by the Object Type

Feature Value. For example, a feature that calculates the shipping cost in E-shop software is

shown in figure A.2. The shipping cost consists of an optional part fixed shipping tax and a

mandatory part shipping fees; fixed shipping tax is a feature that is associated with a feature

value, which has the value 5. A feature can have one or more feature attributes. Feature

attributes are represented in our conceptual model by means of the object type Attribute. There

are two types of attributes: Value Attributes and Reference Attributes. A Value Attribute is

associated with a value; therefore it has an Attribute value attached to it. For example, in figure

3 rate, source and destination represent three value attributes, as each of them is associated with

a value. Reference Attributes are attributes that refer to another feature. For example, in the E-

shop software, we could assume there is a purchase order feature; this feature would have an

attribute shipping cost that refers to the shipping cost feature (given in figure A.2). In addition,

a feature can have a Feature Value constraint; in this case instead of having a specific value, the

feature value is determined by a constraint. The object type Value Constraint represents this

type of constraint. It must be noted that a feature can either have a value constraint or a value

and not both; this is indicated by the exclusion relation between the two roles.

 A feature can be part of a composition (AND,

OR, Alternative) or be standalone (Mandatory,

Optional). Therefore we have defined the object type

Feature Composition that is composed of a number of

Feature in Composition. Feature Composition has three

subtypes AND Composition, Alternative Composition,

and OR Composition, which correspond to the relations

And, Alternative, and Or respectively. Feature

Composition represents the feature group forming the

composition; it is a mapping of the relation branches in

feature models.

Features that are in a composition (represented

by the Feature in Composition object type) have (in addition to their composition) a type that

indicates the type of the feature irrelevant to how it is composed; e.g., can be mandatory or

optional. This is represented by the subtypes Mandatory Feature, Optional Feature, OR

Feature, and Alternative Feature. In order to ensure consistency, features that are members of

an AND Composition should be given the type mandatory (i.e. every member of the group has

an and relation with all other members).

Figure. A.3. Feature model showing

shipping cost example

Appendix A: A Conceptual Model of Mainstream Feature Models

229

The number of times a feature is allowed to occur in the software product is expressed

by the cardinality relation. There are two types of cardinalities allowed, Clone Cardinality and

Composition Cardinality. The Clone Cardinality represents the number of copies (instances) of

a feature that could coexist in the software product; it is only valid for mandatory features. The

Composition Cardinality refers to the number of allowed sub-features of a specific composition

in the software, which makes it only valid for features belonging to an Or Composition.

Features of an Alternative Composition will always have a cardinality of one, while features of

an AND Composition will always have a cardinality that is equal to the number of features in

the composition. Cardinality has a maximum upper bound represented by the object type

Upper_Bound and a minimum lower bound represented by the object type Lower_Bound for

expressing the existence/coexistence of features in the software. Furthermore, alternative to

defining a range for the number of features that could exist in a product an exact number can be

given; this is represented by the object type Exact. Having an exact cardinality excludes both

having an upper bound and a lower bound cardinality, this is indicated by the exclusive relation

between the roles: Exact_cardinality, With_lower_bound and Exact_cardinality,

With_upper_bound.

230

Appendix B: FAM Ontology in OWL Functional Syntax

231

Appendix B

FAM Ontology in OWL Functional Syntax

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(swrlb:=<http://www.w3.org/2003/11/swrlb#>)

Prefix(owl2xml:=<http://www.w3.org/2006/12/owl2-xml#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(:=<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#>)

Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(swrl:=<http://www.w3.org/2003/11/swrl#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Ontology(<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl>

Declaration(Class(:Abstract_Feature))

EquivalentClasses(:Abstract_Feature ObjectIntersectionOf(:Abstract_Feature

ObjectAllValuesFrom(:has_Option :Option_Feature)))

SubClassOf(:Abstract_Feature :Feature)

DisjointClasses(:Abstract_Feature :Concrete_Feature)

Declaration(Class(:Binding_Time))

DisjointClasses(:Binding_Time :FCardinality)

DisjointClasses(:Binding_Time :Feature)

DisjointClasses(:Binding_Time :Perspective)

DisjointClasses(:Binding_Time :Priority)

DisjointClasses(:Binding_Time :Stakeholder)

DisjointClasses(:Binding_Time :Variability)

Declaration(Class(:Business_Analyst))

SubClassOf(:Business_Analyst :Stakeholder)

Declaration(Class(:Cardinality_Error))

SubClassOf(:Cardinality_Error :Error)

Declaration(Class(:Client))

SubClassOf(:Client :Stakeholder)

Declaration(Class(:Concrete_Feature))

EquivalentClasses(:Concrete_Feature ObjectIntersectionOf(:Concrete_Feature

ObjectAllValuesFrom(:mandatory_Composition ObjectUnionOf(:Concrete_Feature

:Abstract_Feature))))

EquivalentClasses(:Concrete_Feature ObjectIntersectionOf(:Concrete_Feature

ObjectAllValuesFrom(:optional_Composition ObjectUnionOf(:Concrete_Feature

:Abstract_Feature))))

SubClassOf(:Concrete_Feature :Feature)

DisjointClasses(:Concrete_Feature :Abstract_Feature)

Declaration(Class(:Cyclic_Error))

SubClassOf(:Cyclic_Error :Error)

Declaration(Class(:Developer))

SubClassOf(:Developer :Stakeholder)

Declaration(Class(:Domain_Expert))

SubClassOf(:Domain_Expert :Stakeholder)

Declaration(Class(:Error))

SubClassOf(:Error owl:Thing)

DisjointClasses(:Error :Priority)

Declaration(Class(:FCardinality))

EquivalentClasses(:FCardinality ObjectIntersectionOf(:FCardinality DataMaxCardinality(1

:max xsd:int)))

EquivalentClasses(:FCardinality ObjectIntersectionOf(:FCardinality DataMaxCardinality(1

:min xsd:int)))

DisjointClasses(:FCardinality :Binding_Time)

DisjointClasses(:FCardinality :Feature)

DisjointClasses(:FCardinality :Perspective)

DisjointClasses(:FCardinality :Priority)

Appendix B: FAM Ontology in OWL Functional Syntax

232

DisjointClasses(:FCardinality :Stakeholder)

Declaration(Class(:Feature))

EquivalentClasses(:Feature ObjectIntersectionOf(:Feature

ObjectAllValuesFrom(:has_Stakeholder :Stakeholder)))

EquivalentClasses(:Feature ObjectIntersectionOf(:Feature ObjectMaxCardinality(1

:has_Owner :Stakeholder)))

DisjointClasses(:Feature :Binding_Time)

DisjointClasses(:Feature :FCardinality)

DisjointClasses(:Feature :Perspective)

DisjointClasses(:Feature :Priority)

DisjointClasses(:Feature :Stakeholder)

Declaration(Class(:Functional))

SubClassOf(:Functional :Perspective)

Declaration(Class(:Graphical_User_Interface))

SubClassOf(:Graphical_User_Interface :Perspective)

Declaration(Class(:Hardware_Interface))

SubClassOf(:Hardware_Interface :Perspective)

Declaration(Class(:Inconsistency))

SubClassOf(:Inconsistency :Error)

Declaration(Class(:Localization))

SubClassOf(:Localization :Perspective)

Declaration(Class(:Marketing))

SubClassOf(:Marketing :Stakeholder)

Declaration(Class(:Modeller))

SubClassOf(:Modeller :Stakeholder)

Declaration(Class(:Non_Functional))

SubClassOf(:Non_Functional :Perspective)

Declaration(Class(:Option_Feature))

EquivalentClasses(:Option_Feature :Variant)

EquivalentClasses(:Option_Feature ObjectIntersectionOf(:Option_Feature

ObjectAllValuesFrom(:option_Of :Abstract_Feature)))

SubClassOf(:Option_Feature :Feature)

Declaration(Class(:Persistent))

SubClassOf(:Persistent :Perspective)

Declaration(Class(:Perspective))

DisjointClasses(:Perspective :Binding_Time)

DisjointClasses(:Perspective :FCardinality)

DisjointClasses(:Perspective :Feature)

DisjointClasses(:Perspective :Priority)

DisjointClasses(:Perspective :Stakeholder)

Declaration(Class(:Priority))

DisjointClasses(:Priority :Binding_Time)

DisjointClasses(:Priority :Error)

DisjointClasses(:Priority :FCardinality)

DisjointClasses(:Priority :Feature)

DisjointClasses(:Priority :Perspective)

DisjointClasses(:Priority :Stakeholder)

DisjointClasses(:Priority :Variability)

Declaration(Class(:Project_Manager))

SubClassOf(:Project_Manager :Stakeholder)

Declaration(Class(:Redundancy))

SubClassOf(:Redundancy :Error)

Declaration(Class(:Sales))

SubClassOf(:Sales :Stakeholder)

Declaration(Class(:Stakeholder))

DisjointClasses(:Stakeholder :Binding_Time)

DisjointClasses(:Stakeholder :FCardinality)

DisjointClasses(:Stakeholder :Feature)

DisjointClasses(:Stakeholder :Perspective)

DisjointClasses(:Stakeholder :Priority)

Declaration(Class(:System))

SubClassOf(:System :Perspective)

Declaration(Class(:Task))

SubClassOf(:Task :Perspective)

Declaration(Class(:Testers))

SubClassOf(:Testers :Stakeholder)

Declaration(Class(:User))

SubClassOf(:User :Perspective)

Declaration(Class(:Variability))

DisjointClasses(:Variability :Binding_Time)

DisjointClasses(:Variability :Priority)

Declaration(Class(:Variant))

EquivalentClasses(:Variant :Option_Feature)

Appendix B: FAM Ontology in OWL Functional Syntax

233

SubClassOf(:Variant :Variability)

Declaration(Class(:Variation_Point))

SubClassOf(:Variation_Point :Variability)

Declaration(Class(owl:Thing))

Declaration(ObjectProperty(:FTFC))

ObjectPropertyDomain(:FTFC :Feature)

ObjectPropertyRange(:FTFC :Feature)

Declaration(ObjectProperty(:belongs_To))

ObjectPropertyDomain(:belongs_To :Feature)

ObjectPropertyRange(:belongs_To :Perspective)

Declaration(ObjectProperty(:composition))

ObjectPropertyDomain(:composition :Concrete_Feature)

ObjectPropertyRange(:composition ObjectUnionOf(:Abstract_Feature :Concrete_Feature

ObjectComplementOf(:Option_Feature)))

Declaration(ObjectProperty(:cyclic))

SymmetricObjectProperty(:cyclic)

ObjectPropertyDomain(:cyclic :Cyclic_Error)

ObjectPropertyRange(:cyclic :Cyclic_Error)

Declaration(ObjectProperty(:excludes))

SubObjectPropertyOf(:excludes :FTFC)

SymmetricObjectProperty(:excludes)

Declaration(ObjectProperty(:has_Binding_Time))

FunctionalObjectProperty(:has_Binding_Time)

ObjectPropertyDomain(:has_Binding_Time :Feature)

ObjectPropertyRange(:has_Binding_Time :Binding_Time)

Declaration(ObjectProperty(:has_Cardinality))

FunctionalObjectProperty(:has_Cardinality)

ObjectPropertyDomain(:has_Cardinality :Abstract_Feature)

ObjectPropertyRange(:has_Cardinality :FCardinality)

Declaration(ObjectProperty(:has_Option))

InverseObjectProperties(:has_Option :option_Of)

ObjectPropertyDomain(:has_Option :Abstract_Feature)

ObjectPropertyRange(:has_Option :Option_Feature)

Declaration(ObjectProperty(:has_Owner))

ObjectPropertyDomain(:has_Owner :Feature)

ObjectPropertyRange(:has_Owner :Stakeholder)

Declaration(ObjectProperty(:has_Priority))

FunctionalObjectProperty(:has_Priority)

Declaration(ObjectProperty(:has_Stakeholder))

ObjectPropertyDomain(:has_Stakeholder :Feature)

ObjectPropertyRange(:has_Stakeholder :Stakeholder)

Declaration(ObjectProperty(:inconsistent))

SymmetricObjectProperty(:inconsistent)

ObjectPropertyDomain(:inconsistent :Inconsistency)

ObjectPropertyRange(:inconsistent :Inconsistency)

Declaration(ObjectProperty(:mandatory_Composition))

SubObjectPropertyOf(:mandatory_Composition :composition)

ObjectPropertyDomain(:mandatory_Composition :Concrete_Feature)

ObjectPropertyRange(:mandatory_Composition ObjectUnionOf(:Abstract_Feature

:Concrete_Feature ObjectComplementOf(:Option_Feature)))

Declaration(ObjectProperty(:option_Of))

InverseObjectProperties(:has_Option :option_Of)

ObjectPropertyDomain(:option_Of :Option_Feature)

ObjectPropertyRange(:option_Of :Abstract_Feature)

Declaration(ObjectProperty(:optional_Composition))

SubObjectPropertyOf(:optional_Composition :composition)

ObjectPropertyDomain(:optional_Composition :Concrete_Feature)

ObjectPropertyRange(:optional_Composition ObjectUnionOf(:Abstract_Feature

:Concrete_Feature ObjectComplementOf(:Option_Feature)))

Declaration(ObjectProperty(:redundant))

SymmetricObjectProperty(:redundant)

ObjectPropertyDomain(:redundant :Redundancy)

ObjectPropertyRange(:redundant :Redundancy)

Declaration(ObjectProperty(:requires))

SubObjectPropertyOf(:requires :FTFC)

TransitiveObjectProperty(:requires)

Declaration(ObjectProperty(:same))

SubObjectPropertyOf(:same :FTFC)

SymmetricObjectProperty(:same)

Declaration(ObjectProperty(:uses))

SubObjectPropertyOf(:uses :FTFC)

TransitiveObjectProperty(:uses)

Declaration(DataProperty(:has_Description))

Appendix B: FAM Ontology in OWL Functional Syntax

234

DataPropertyDomain(:has_Description :Feature)

DataPropertyRange(:has_Description xsd:string)

Declaration(DataProperty(:max))

DataPropertyDomain(:max :FCardinality)

Declaration(DataProperty(:min))

DataPropertyDomain(:min :FCardinality)

Declaration(NamedIndividual(:Analysis))

ClassAssertion(:Binding_Time :Analysis)

ClassAssertion(owl:Thing :Analysis)

Declaration(NamedIndividual(:Compilation))

ClassAssertion(:Binding_Time :Compilation)

ClassAssertion(owl:Thing :Compilation)

Declaration(NamedIndividual(:Design))

ClassAssertion(:Binding_Time :Design)

ClassAssertion(owl:Thing :Design)

Declaration(NamedIndividual(:High))

ClassAssertion(:Priority :High)

ClassAssertion(owl:Thing :High)

Declaration(NamedIndividual(:Implementation))

ClassAssertion(:Binding_Time :Implementation)

ClassAssertion(owl:Thing :Implementation)

Declaration(NamedIndividual(:Installation))

ClassAssertion(:Binding_Time :Installation)

ClassAssertion(owl:Thing :Installation)

Declaration(NamedIndividual(:Low))

ClassAssertion(:Priority :Low)

ClassAssertion(owl:Thing :Low)

Declaration(NamedIndividual(:Medium))

ClassAssertion(:Priority :Medium)

ClassAssertion(owl:Thing :Medium)

Declaration(NamedIndividual(:None))

ClassAssertion(:Priority :None)

ClassAssertion(owl:Thing :None)

Declaration(NamedIndividual(:StartUp))

ClassAssertion(:Binding_Time :StartUp)

ClassAssertion(owl:Thing :StartUp)

Declaration(NamedIndividual(:Top))

ClassAssertion(:Priority :Top)

ClassAssertion(owl:Thing :Top)

Declaration(AnnotationProperty(:Dependency_Reason))

Declaration(AnnotationProperty(:Dependency_Owner))

DLSafeRule(Body(ObjectPropertyAtom(:has_Option Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)) ClassAtom(:Abstract_Feature

Variable(<urn:swrl#x>)))Head(ClassAtom(:Variation_Point Variable(<urn:swrl#x>))))

DLSafeRule(Body(ClassAtom(:Abstract_Feature Variable(<urn:swrl#x>))

ObjectPropertyAtom(:excludes Variable(<urn:swrl#x>) Variable(<urn:swrl#y>))

ObjectPropertyAtom(:has_Option Variable(<urn:swrl#x>)

Variable(<urn:swrl#z>)))Head(ObjectPropertyAtom(:excludes Variable(<urn:swrl#z>)

Variable(<urn:swrl#y>))))

DLSafeRule(Body(ObjectPropertyAtom(:uses Variable(<urn:swrl#x>) Variable(<urn:swrl#y>))

ObjectPropertyAtom(:excludes Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)))Head(ObjectPropertyAtom(:inconsistent Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>))))

DLSafeRule(Body(ClassAtom(:Concrete_Feature Variable(<urn:swrl#x>))

ObjectPropertyAtom(:excludes Variable(<urn:swrl#x>) Variable(<urn:swrl#y>))

ObjectPropertyAtom(:mandatory_Composition Variable(<urn:swrl#x>)

Variable(<urn:swrl#z>)))Head(ObjectPropertyAtom(:excludes Variable(<urn:swrl#z>)

Variable(<urn:swrl#y>))))

DLSafeRule(Body(ObjectPropertyAtom(:uses Variable(<urn:swrl#y>) Variable(<urn:swrl#x>))

ObjectPropertyAtom(:uses Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)))Head(ObjectPropertyAtom(:cyclic Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>))))

DLSafeRule(Body(DataPropertyAtom(:max Variable(<urn:swrl#x>) Variable(<urn:swrl#y>))

DataPropertyAtom(:min Variable(<urn:swrl#x>) Variable(<urn:swrl#z>))

BuiltInAtom(swrlb:greaterThan Variable(<urn:swrl#z>)

Variable(<urn:swrl#y>)))Head(ClassAtom(:Cardinality_Error Variable(<urn:swrl#x>))))

DLSafeRule(Body(ObjectPropertyAtom(:requires Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)) ObjectPropertyAtom(:excludes Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)))Head(ObjectPropertyAtom(:inconsistent Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>))))

DLSafeRule(Body(ObjectPropertyAtom(:uses Variable(<urn:swrl#x>) Variable(<urn:swrl#y>))

ObjectPropertyAtom(:requires Variable(<urn:swrl#x>)

Appendix B: FAM Ontology in OWL Functional Syntax

235

Variable(<urn:swrl#y>)))Head(ObjectPropertyAtom(:redundant Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>))))

DLSafeRule(Body(ObjectPropertyAtom(:optional_Composition Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)) ClassAtom(:Concrete_Feature

Variable(<urn:swrl#x>)))Head(ClassAtom(:Variation_Point Variable(<urn:swrl#x>))))

DLSafeRule(Body(ClassAtom(:Concrete_Feature Variable(<urn:swrl#x>))

ObjectPropertyAtom(:excludes Variable(<urn:swrl#x>) Variable(<urn:swrl#y>))

ObjectPropertyAtom(:optional_Composition Variable(<urn:swrl#x>)

Variable(<urn:swrl#z>)))Head(ObjectPropertyAtom(:excludes Variable(<urn:swrl#z>)

Variable(<urn:swrl#y>))))

)

236

Appendix C: OWL DL Description Logic Representation

237

Appendix C

OWL DL Description Logic Representation

Figure. B.1. OWL DL Axioms and Facts [Horrocks et. al., 2003]

Appendix C: OWL DL Description Logic Representation

238

Figure. B.2 OWL DL descriptions, data ranges, properties, individuals and data values

Appendix D: Feature Pool Ontology in OWL Functional Syntax

239

Appendix D:

Feature Pool Ontology in OWL Functional

Syntax

Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)

Prefix(owl2xml:=<http://www.w3.org/2006/12/owl2-xml#>)

Prefix(swrlb:=<http://www.w3.org/2003/11/swrlb#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Prefix(:=<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl#>)

Prefix(xml:=<http://www.w3.org/XML/1998/namespace>)

Prefix(rdf:=<http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(swrl:=<http://www.w3.org/2003/11/swrl#>)

Prefix(rdfs:=<http://www.w3.org/2000/01/rdf-schema#>)

Ontology(<http://wise.vub.ac.be/Members/lamia/variability/Feature_Assembly/FAM.owl>

Declaration(Class(:Abstract_Feature))

EquivalentClasses(:Abstract_Feature ObjectIntersectionOf(:Abstract_Feature

ObjectAllValuesFrom(:Has_Option :Option_Feature)))

SubClassOf(:Abstract_Feature :Feature)

DisjointClasses(:Abstract_Feature :Concrete_Feature)

Declaration(Class(:Binding_Time))

SubClassOf(:Binding_Time owl:Thing)

DisjointClasses(:Binding_Time :Feature)

DisjointClasses(:Binding_Time :Keywords)

DisjointClasses(:Binding_Time :Perspective)

DisjointClasses(:Binding_Time :Product_Line)

DisjointClasses(:Binding_Time :Stakeholder)

DisjointClasses(:Binding_Time :Variability)

Declaration(Class(:Business_Analyst))

SubClassOf(:Business_Analyst :Stakeholder)

Declaration(Class(:Client))

SubClassOf(:Client :Stakeholder)

Declaration(Class(:Concrete_Feature))

EquivalentClasses(:Concrete_Feature ObjectIntersectionOf(:Concrete_Feature

ObjectAllValuesFrom(:Mandatory_Composition ObjectUnionOf(:Concrete_Feature

:Abstract_Feature))))

EquivalentClasses(:Concrete_Feature ObjectIntersectionOf(:Concrete_Feature

ObjectAllValuesFrom(:Optional_Composition ObjectUnionOf(:Concrete_Feature

:Abstract_Feature))))

SubClassOf(:Concrete_Feature :Feature)

DisjointClasses(:Concrete_Feature :Abstract_Feature)

Declaration(Class(:Developer))

SubClassOf(:Developer :Stakeholder)

Declaration(Class(:Domain_Expert))

SubClassOf(:Domain_Expert :Stakeholder)

Declaration(Class(:Feature))

EquivalentClasses(:Feature ObjectIntersectionOf(:Feature

ObjectAllValuesFrom(:has_Stakeholder :Stakeholder)))

EquivalentClasses(:Feature ObjectIntersectionOf(:Feature ObjectMaxCardinality(1

:has_Owner :Stakeholder)))

SubClassOf(:Feature owl:Thing)

DisjointClasses(:Feature :Binding_Time)

DisjointClasses(:Feature :Perspective)

DisjointClasses(:Feature :Stakeholder)

Declaration(Class(:Functional))

SubClassOf(:Functional :Perspective)

Declaration(Class(:Graphical_User_Interface))

SubClassOf(:Graphical_User_Interface :Perspective)

Appendix D: Feature Pool Ontology in OWL Functional Syntax

240

Declaration(Class(:Hardware_Interface))

SubClassOf(:Hardware_Interface :Perspective)

Declaration(Class(:Keywords))

SubClassOf(:Keywords owl:Thing)

DisjointClasses(:Keywords :Binding_Time)

DisjointClasses(:Keywords :Perspective)

Declaration(Class(:Localization))

SubClassOf(:Localization :Perspective)

Declaration(Class(:Marketing))

SubClassOf(:Marketing :Stakeholder)

Declaration(Class(:Modeller))

SubClassOf(:Modeller :Stakeholder)

Declaration(Class(:Non_Functional))

SubClassOf(:Non_Functional :Perspective)

Declaration(Class(:Option_Feature))

EquivalentClasses(:Option_Feature :Variant)

EquivalentClasses(:Option_Feature ObjectIntersectionOf(:Option_Feature

ObjectAllValuesFrom(:Option_of :Abstract_Feature)))

SubClassOf(:Option_Feature :Feature)

Declaration(Class(:Persistent))

SubClassOf(:Persistent :Perspective)

Declaration(Class(:Perspective))

DisjointClasses(:Perspective :Binding_Time)

DisjointClasses(:Perspective :Feature)

DisjointClasses(:Perspective :Keywords)

DisjointClasses(:Perspective :Stakeholder)

Declaration(Class(:Product_Line))

SubClassOf(:Product_Line owl:Thing)

DisjointClasses(:Product_Line :Binding_Time)

Declaration(Class(:Project_Manager))

SubClassOf(:Project_Manager :Stakeholder)

Declaration(Class(:Sales))

SubClassOf(:Sales :Stakeholder)

Declaration(Class(:Stakeholder))

DisjointClasses(:Stakeholder :Binding_Time)

DisjointClasses(:Stakeholder :Feature)

DisjointClasses(:Stakeholder :Perspective)

Declaration(Class(:System))

SubClassOf(:System :Perspective)

Declaration(Class(:Task))

SubClassOf(:Task :Perspective)

Declaration(Class(:Testers))

SubClassOf(:Testers :Stakeholder)

Declaration(Class(:Variability))

DisjointClasses(:Variability :Binding_Time)

Declaration(Class(:Variant))

EquivalentClasses(:Variant :Option_Feature)

SubClassOf(:Variant :Variability)

Declaration(Class(:Variation_Point))

SubClassOf(:Variation_Point :Variability)

Declaration(Class(owl:Thing))

Declaration(ObjectProperty(:Belongs_to))

ObjectPropertyDomain(:Belongs_to :Feature)

ObjectPropertyRange(:Belongs_to :Perspective)

Declaration(ObjectProperty(:Composition))

ObjectPropertyDomain(:Composition :Concrete_Feature)

ObjectPropertyRange(:Composition ObjectUnionOf(:Concrete_Feature :Abstract_Feature))

Declaration(ObjectProperty(:Excludes))

SubObjectPropertyOf(:Excludes :FTFC)

SymmetricObjectProperty(:Excludes)

Declaration(ObjectProperty(:FTFC))

ObjectPropertyDomain(:FTFC :Feature)

ObjectPropertyRange(:FTFC :Feature)

Declaration(ObjectProperty(:Has_Option))

InverseObjectProperties(:Has_Option :Option_of)

ObjectPropertyDomain(:Has_Option :Abstract_Feature)

ObjectPropertyRange(:Has_Option :Option_Feature)

Declaration(ObjectProperty(:Mandatory_Composition))

SubObjectPropertyOf(:Mandatory_Composition :Composition)

ObjectPropertyDomain(:Mandatory_Composition :Concrete_Feature)

ObjectPropertyRange(:Mandatory_Composition ObjectUnionOf(:Concrete_Feature

:Abstract_Feature))

Declaration(ObjectProperty(:Option_of))

Appendix D: Feature Pool Ontology in OWL Functional Syntax

241

InverseObjectProperties(:Has_Option :Option_of)

ObjectPropertyDomain(:Option_of :Option_Feature)

ObjectPropertyRange(:Option_of :Abstract_Feature)

Declaration(ObjectProperty(:Optional_Composition))

SubObjectPropertyOf(:Optional_Composition :Composition)

ObjectPropertyDomain(:Optional_Composition :Concrete_Feature)

ObjectPropertyRange(:Optional_Composition ObjectUnionOf(:Concrete_Feature

:Abstract_Feature))

Declaration(ObjectProperty(:Requires))

SubObjectPropertyOf(:Requires :FTFC)

TransitiveObjectProperty(:Requires)

Declaration(ObjectProperty(:Same))

SubObjectPropertyOf(:Same :FTFC)

SymmetricObjectProperty(:Same)

Declaration(ObjectProperty(:Used_in))

ObjectPropertyDomain(:Used_in :Feature)

ObjectPropertyRange(:Used_in :Product_Line)

Declaration(ObjectProperty(:Uses))

SubObjectPropertyOf(:Uses :FTFC)

TransitiveObjectProperty(:Uses)

Declaration(ObjectProperty(:has_Binding_Time))

ObjectPropertyDomain(:has_Binding_Time :Feature)

ObjectPropertyRange(:has_Binding_Time :Binding_Time)

Declaration(ObjectProperty(:has_Keyword))

SubObjectPropertyOf(:has_Keyword owl:topObjectProperty)

ObjectPropertyDomain(:has_Keyword :Feature)

ObjectPropertyDomain(:has_Keyword :Perspective)

ObjectPropertyDomain(:has_Keyword :Product_Line)

ObjectPropertyRange(:has_Keyword :Keywords)

Declaration(ObjectProperty(:has_Owner))

ObjectPropertyDomain(:has_Owner :Feature)

ObjectPropertyRange(:has_Owner :Stakeholder)

Declaration(ObjectProperty(:has_Perspective))

ObjectPropertyDomain(:has_Perspective :Product_Line)

ObjectPropertyRange(:has_Perspective :Perspective)

Declaration(ObjectProperty(:has_Stakeholder))

ObjectPropertyDomain(:has_Stakeholder :Feature)

ObjectPropertyRange(:has_Stakeholder :Stakeholder)

Declaration(ObjectProperty(owl:topObjectProperty))

Declaration(DataProperty(:Standalone))

DataPropertyDomain(:Standalone :Feature)

Declaration(DataProperty(:has_Description))

Declaration(DataProperty(:has_Label))

Declaration(DataProperty(:has_Rationale))

DataPropertyDomain(:has_Rationale :Feature)

DataPropertyRange(:has_Rationale xsd:string)

Declaration(NamedIndividual(:Analysis))

ClassAssertion(:Binding_Time :Analysis)

ClassAssertion(owl:Thing :Analysis)

Declaration(NamedIndividual(:Compilation))

ClassAssertion(:Binding_Time :Compilation)

ClassAssertion(owl:Thing :Compilation)

Declaration(NamedIndividual(:Design))

ClassAssertion(:Binding_Time :Design)

ClassAssertion(owl:Thing :Design)

Declaration(NamedIndividual(:Installation))

ClassAssertion(:Binding_Time :Installation)

ClassAssertion(owl:Thing :Installation)

Declaration(NamedIndividual(:RunTime))

ClassAssertion(:Binding_Time :RunTime)

ClassAssertion(owl:Thing :RunTime)

Declaration(NamedIndividual(:StartUp))

ClassAssertion(:Binding_Time :StartUp)

ClassAssertion(owl:Thing :StartUp)

Declaration(AnnotationProperty(:Dependency_Owner))

Declaration(AnnotationProperty(:Dependency_Reason))

Declaration(AnnotationProperty(:Enforced_Dependency))

DLSafeRule(Body(ObjectPropertyAtom(:Optional_Composition Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)) ClassAtom(:Concrete_Feature

Variable(<urn:swrl#x>)))Head(ClassAtom(:Variation_Point Variable(<urn:swrl#x>))))

DLSafeRule(Body(ObjectPropertyAtom(:Has_Option Variable(<urn:swrl#x>)

Variable(<urn:swrl#y>)) ClassAtom(:Abstract_Feature

Variable(<urn:swrl#x>)))Head(ClassAtom(:Variation_Point Variable(<urn:swrl#x>))))

Appendix D: Feature Pool Ontology in OWL Functional Syntax

242

DisjointClasses(:Perspective :Product_Line :Variability)

)

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Chapter 1
	Introduction
	1.1 Research Context
	1.2 Research Scope
	1.3 Problem Statement
	1.4 Research Questions
	1.5 Positioning of the Research
	1.5.1 Feature Modelling Methods
	1.5.2 Feature Modelling for Large and Complex Systems
	1.5.3 Reuse and Feature Modelling
	1.5.4 Knowledge Management and Software Models

	1.6 Research Approach and Methodology
	1.7 Research Contributions
	1.8 Thesis Outline

	Chapter 2
	Variability Modelling Using Feature Models
	2.1 Software Variability
	2.2 Software Variability Modelling
	2.3 Feature Models
	2.3.1 Normalizing Feature Models

	2.4 Mainstream Feature Modelling Techniques
	2.4.1 Feature-Oriented Reuse Method (FORM)
	2.4.2 FeatureRSEB
	2.4.3 van Gurp et al. Feature Graph
	2.4.4 Riebisch et al. Feature Models
	2.4.5 PLUSS
	2.4.6 Cardinality Based Feature Models

	2.5 Feature Modelling Methods based on UML
	2.5.1 Clauss UML Variability Stereotypes
	2.5.2 Ziadi et al. UML Variability Profile
	2.5.3 Gomaa Variability Metaclasses
	2.5.4 Korherr and List UML Variability Profiles

	2.6 Summary

	Chapter 3
	Related Work
	3.1 Representing and Analysing Feature Models
	3.2 Feature Models for Configuration
	3.3 Modelling with Separation of Concerns
	3.4 Model Integration and Consistency Checking
	3.5 Multiple Product Lines
	3.6 Variability Modelling and Databases
	3.7 Feature Model Visualization
	3.8 Summary

	Chapter 4
	Background
	4.1 Conceptual Modelling
	4.2 Knowledge Representation Techniques
	4.2.1 Logic Based Knowledge Representation
	4.2.2 Semantic Networks
	4.2.3 Ontologies
	4.2.4 Rule-Based Knowledge Representation

	4.3 Semantic Web Knowledge Management Techniques
	4.3.1 OWL
	4.3.2 Querying RDFs/OWL Ontologies
	4.3.3 Reasoning on RDFs/OWL Ontologies

	4.4 Knowledge Management Applied to Software Variability
	4.5 Summary

	Chapter 5
	Challenges for Software Variability Modelling
	5.1 Limitations of Mainstream Feature Modelling Techniques
	5.1.1 Difficulties in Using the Feature Modelling Technique in Practice
	5.1.2 Ambiguity in Modelling Concepts
	5.1.3 Limited Reuse Opportunities
	5.1.4 Lack of Abstraction Mechanisms

	5.2 Challenges in Managing the Information in Feature Models
	5.2.1 Information Management to Support Feature Modelling
	5.2.2 Information Management of Feature Models

	5.3 Recommendations for Feature Assembly
	5.4 Summary

	Chapter 6
	The Feature Assembly Modelling Technique
	6.1 Feature Assembly Overview
	6.2 Running Example – E-Shop Product Line
	6.3 Variability Analysis
	6.4 Multi-Perspective Approach
	6.4.1 System Perspective
	 Purpose
	 When Used
	 How to Find Features
	 Example

	6.4.2 User Perspective
	 Purpose
	 When Used
	 How to Find Features
	 Example

	6.4.3 Functional Perspective
	 Purpose
	 When Used
	 How to Find Features
	 Example

	6.4.4 Graphical User Interface Perspective
	 Purpose
	 When Used
	 How to Find Features
	 Example

	6.4.5 Goal Perspective
	 Purpose
	 When Used
	 How to Find Features
	 Example

	6.4.6 Non-Functional Perspective
	 Purpose
	 When Used
	 How to Find Features
	 Example

	6.4.7 Discussion

	6.5 Feature Assembly Modelling (FAM) Language
	6.5.1 Features
	6.5.2 Feature Relations
	 Feature Composition
	 Feature Specification

	6.5.3 Feature Dependencies
	6.5.3.1 Feature dependencies within the same perspective
	6.5.3.2 Feature dependencies between different perspectives

	6.5.4 FAM Formal Specification
	6.5.4.1 FAM Syntax
	6.5.4.2 FAM Formal Semantics

	6.6 Discussion
	6.7 Summary

	Chapter 7
	Feature Assembly Modelling For Data Intensive Applications
	7.1 The Persistent Perspective
	7.1.1 Defining the Persistent Perspective
	7.1.2 Refine the Persistent Perspective

	7.2 Linking Feature Assembly Models and Data Models
	7.2.1 Linking Features to Data Entities - The Centralized Data Model Approach
	7.2.2 Linking Features to Data Entities - The Decentralized Data Model Approach

	7.3 Summary

	Chapter 8
	The Quiz Product Line Case
	8.1 Problem Statement
	8.2 Feature Assembly Models for the QPL
	8.2.1 QPL System Perspective
	8.2.2 QPL Users Perspective
	8.2.3 QPL Functional Perspective
	8.2.4 QPL Graphical User Interface Perspective
	8.2.5 Completing the Model
	8.2.6 QPL Persistent Perspective

	8.3 QPL Variable Data Model
	8.4 Extensibility of the Feature Assembly Modelling Technique – An example
	8.5 Lessons Learned
	8.6 Summary

	Chapter 9
	The Feature Assembly Reuse Framework
	9.1 Why Feature Assembly?
	9.2 Overview of the Feature Assembly Reuse Framework
	9.3 The Feature Pool
	9.3.1 Feature Pool Example

	9.4 Assembling Features with Feature Assembly
	9.4.1 Feature Assembly Example

	9.5 Summary

	Chapter 10
	Feature Assembly Knowledge Management Framework
	10.1 Overview
	10.1.1 Why OWL?

	10.2 The FAM Ontology
	10.2.1 The FAM Ontology Vocabulary
	10.2.2 FAM Error Detection via the FAM Ontology
	10.2.2.1 FAM Ontology - Error Capturing Rules
	 Rules to Capture Cyclic Dependencies
	 Rules to Capture Inconsistent Dependencies
	 Rules to Capture Redundant Dependencies
	 Rules to Capture Cardinality Errors
	10.2.2.2 FAM Ontology - Error Debugging

	10.2.3 Populating the FAM Ontology with Individuals

	10.3 FAM Knowledge Manipulation
	10.3.1 FAM Ontology Browsing
	10.3.2 FAM Ontology Querying
	10.3.3 Dedicated Ontology Browsing and Querying

	10.4 The Feature Pool Ontology Representation
	10.5 Summary

	Chapter 11
	Feature Assembly in Practice
	11.1 Pilot Survey
	11.2 ANTIDOT Experience Report
	11.2.1 Method Adopted
	11.2.2 Feature Assembly Modelling Technique
	11.2.3 Feature Assembly Knowledge Manipulation
	11.2.4 The Feature Assembly Reuse Framework
	11.2.5 Discussion

	11.3 Threats to Validity
	11.4 Summary

	Chapter 12
	Conclusions and Future Work
	12.1 Summary
	12.1.1 Steps in the Research and Artefacts developed:

	12.2 Contributions and Achievements
	12.3 Limitations
	12.4 Future Work

	List of References
	Appendix A
	A Conceptual Model of Feature Mainstream Models
	Appendix B
	FAM Ontology in OWL Functional Syntax
	Appendix C
	OWL DL Description Logic Representation
	Appendix D:
	Feature Pool Ontology in OWL Functional Syntax

